Added Quaternion spheric interpolation
Fixed NzVector(2/3)::Length() and NzQuaternion::Magnitude() returning double instead of template type Added quaternion dot product Added gitignore
This commit is contained in:
@@ -52,6 +52,12 @@ NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
|
||||
Set(quat);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T NzQuaternion<T>::DotProduct(const NzQuaternion& vec) const
|
||||
{
|
||||
return w*vec.w + x*vec.x + y*vec.y + z.vec.z;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
|
||||
{
|
||||
@@ -68,19 +74,19 @@ NzQuaternion<T> NzQuaternion<T>::GetNormalized() const
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
double NzQuaternion<T>::Magnitude() const
|
||||
T NzQuaternion<T>::Magnitude() const
|
||||
{
|
||||
return std::sqrt(SquaredMagnitude());
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
double NzQuaternion<T>::Normalize()
|
||||
T NzQuaternion<T>::Normalize()
|
||||
{
|
||||
T squaredLength = SquaredMagnitude();
|
||||
|
||||
if (std::fabs(squaredLength) > 0.00001 && std::fabs(squaredLength - 1.0) > 0.00001)
|
||||
{
|
||||
double length = std::sqrt(squaredLength);
|
||||
T length = std::sqrt(squaredLength);
|
||||
|
||||
w /= length;
|
||||
x /= length;
|
||||
@@ -90,7 +96,7 @@ double NzQuaternion<T>::Normalize()
|
||||
return length;
|
||||
}
|
||||
else
|
||||
return std::sqrt(squaredLength);
|
||||
return 1.0; // Le quaternion est déjà normalisé
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@@ -106,8 +112,6 @@ void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
|
||||
x = X;
|
||||
y = Y;
|
||||
z = Z;
|
||||
|
||||
Normalize();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@@ -117,8 +121,6 @@ void NzQuaternion<T>::Set(T quat[4])
|
||||
x = quat[1];
|
||||
y = quat[2];
|
||||
z = quat[3];
|
||||
|
||||
Normalize();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@@ -175,6 +177,52 @@ void NzQuaternion<T>::SetZero()
|
||||
Set(0.0, 0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
|
||||
{
|
||||
if (interp <= 0.0)
|
||||
return quatA;
|
||||
|
||||
if (interp >= 1.0)
|
||||
return quatB;
|
||||
|
||||
NzQuaternion q;
|
||||
|
||||
T cosOmega = quatA.DotProduct(quatB);
|
||||
if (cosOmega < 0.0)
|
||||
{
|
||||
// On inverse tout
|
||||
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
|
||||
cosOmega = -cosOmega;
|
||||
}
|
||||
else
|
||||
q.Set(quatB);
|
||||
|
||||
T k0, k1;
|
||||
if (cosOmega > 0.9999)
|
||||
{
|
||||
// Interpolation linéaire pour éviter une division par zéro
|
||||
k0 = 1.0 - interp;
|
||||
k1 = interp;
|
||||
}
|
||||
else
|
||||
{
|
||||
T sinOmega = std::sqrt(1.0f - (cosOmega * cosOmega));
|
||||
T omega = std::atan2(sinOmega, cosOmega);
|
||||
|
||||
// Pour éviter deux divisions
|
||||
sinOmega = 1/sinOmega;
|
||||
|
||||
k0 = std::sin((1.0 - interp) * omega) * sinOmega;
|
||||
k1 = std::sin(interp * omega) * sinOmega;
|
||||
}
|
||||
|
||||
/* interpolate and return new quaternion */
|
||||
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
|
||||
|
||||
return result += q;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
|
||||
{
|
||||
@@ -203,17 +251,22 @@ NzString NzQuaternion<T>::ToString() const
|
||||
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
|
||||
{
|
||||
return NzQuaternion(w + quat.w,
|
||||
x + quat.x,
|
||||
y + quat.y,
|
||||
z + quat.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
|
||||
{
|
||||
NzQuaternion result(w * quat.w - x * quat.x - y * quat.y - z * quat.z,
|
||||
return NzQuaternion(w * quat.w - x * quat.x - y * quat.y - z * quat.z,
|
||||
w * quat.x + x * quat.w + y * quat.z - z * quat.y,
|
||||
w * quat.y + y * quat.w + z * quat.x - x * quat.z,
|
||||
w * quat.z + z * quat.w + x * quat.y - y * quat.x);
|
||||
|
||||
result.Normalize();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@@ -223,9 +276,7 @@ NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
|
||||
normal.Normalise();
|
||||
|
||||
NzQuaternion qvec(0.0, normal.x, normal.y, normal.z);
|
||||
NzQuaternion result;
|
||||
|
||||
result = operator*(qvec * GetConjugate());
|
||||
NzQuaternion result = operator*(qvec * GetConjugate());
|
||||
|
||||
return NzVector3<T>(result.x, result.y, result.z);
|
||||
|
||||
@@ -247,30 +298,27 @@ NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*=(const NzQuaternion& quat)
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
|
||||
{
|
||||
NzQuaternion q(*this);
|
||||
|
||||
return operator=(q * quat);
|
||||
return operator=(operator+(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator*=(T scale)
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
|
||||
{
|
||||
w *= scale;
|
||||
x *= scale;
|
||||
y *= scale;
|
||||
z *= scale;
|
||||
|
||||
return *this;
|
||||
return operator=(operator*(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
NzQuaternion<T> NzQuaternion<T>::operator/=(const NzQuaternion& quat)
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
|
||||
{
|
||||
NzQuaternion q(*this);
|
||||
return operator=(operator*(scale));
|
||||
}
|
||||
|
||||
return operator=(q / quat);
|
||||
template<typename T>
|
||||
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
|
||||
{
|
||||
return operator=(operator/(quat));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
|
||||
Reference in New Issue
Block a user