Added Quaternion spheric interpolation

Fixed NzVector(2/3)::Length() and NzQuaternion::Magnitude() returning
double instead of template type
Added quaternion dot product
Added gitignore
This commit is contained in:
Lynix
2012-06-13 17:54:07 +02:00
parent e2a38b3790
commit 0f84f8eda8
7 changed files with 254 additions and 49 deletions

View File

@@ -52,6 +52,12 @@ NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
Set(quat);
}
template<typename T>
T NzQuaternion<T>::DotProduct(const NzQuaternion& vec) const
{
return w*vec.w + x*vec.x + y*vec.y + z.vec.z;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
{
@@ -68,19 +74,19 @@ NzQuaternion<T> NzQuaternion<T>::GetNormalized() const
}
template<typename T>
double NzQuaternion<T>::Magnitude() const
T NzQuaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
template<typename T>
double NzQuaternion<T>::Normalize()
T NzQuaternion<T>::Normalize()
{
T squaredLength = SquaredMagnitude();
if (std::fabs(squaredLength) > 0.00001 && std::fabs(squaredLength - 1.0) > 0.00001)
{
double length = std::sqrt(squaredLength);
T length = std::sqrt(squaredLength);
w /= length;
x /= length;
@@ -90,7 +96,7 @@ double NzQuaternion<T>::Normalize()
return length;
}
else
return std::sqrt(squaredLength);
return 1.0; // Le quaternion est déjà normalisé
}
template<typename T>
@@ -106,8 +112,6 @@ void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
x = X;
y = Y;
z = Z;
Normalize();
}
template<typename T>
@@ -117,8 +121,6 @@ void NzQuaternion<T>::Set(T quat[4])
x = quat[1];
y = quat[2];
z = quat[3];
Normalize();
}
template<typename T>
@@ -175,6 +177,52 @@ void NzQuaternion<T>::SetZero()
Set(0.0, 0.0, 0.0, 0.0);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
{
if (interp <= 0.0)
return quatA;
if (interp >= 1.0)
return quatB;
NzQuaternion q;
T cosOmega = quatA.DotProduct(quatB);
if (cosOmega < 0.0)
{
// On inverse tout
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
cosOmega = -cosOmega;
}
else
q.Set(quatB);
T k0, k1;
if (cosOmega > 0.9999)
{
// Interpolation linéaire pour éviter une division par zéro
k0 = 1.0 - interp;
k1 = interp;
}
else
{
T sinOmega = std::sqrt(1.0f - (cosOmega * cosOmega));
T omega = std::atan2(sinOmega, cosOmega);
// Pour éviter deux divisions
sinOmega = 1/sinOmega;
k0 = std::sin((1.0 - interp) * omega) * sinOmega;
k1 = std::sin(interp * omega) * sinOmega;
}
/* interpolate and return new quaternion */
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
return result += q;
}
template<typename T>
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
{
@@ -203,17 +251,22 @@ NzString NzQuaternion<T>::ToString() const
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
{
return NzQuaternion(w + quat.w,
x + quat.x,
y + quat.y,
z + quat.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
{
NzQuaternion result(w * quat.w - x * quat.x - y * quat.y - z * quat.z,
return NzQuaternion(w * quat.w - x * quat.x - y * quat.y - z * quat.z,
w * quat.x + x * quat.w + y * quat.z - z * quat.y,
w * quat.y + y * quat.w + z * quat.x - x * quat.z,
w * quat.z + z * quat.w + x * quat.y - y * quat.x);
result.Normalize();
return result;
}
template<typename T>
@@ -223,9 +276,7 @@ NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
normal.Normalise();
NzQuaternion qvec(0.0, normal.x, normal.y, normal.z);
NzQuaternion result;
result = operator*(qvec * GetConjugate());
NzQuaternion result = operator*(qvec * GetConjugate());
return NzVector3<T>(result.x, result.y, result.z);
@@ -247,30 +298,27 @@ NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*=(const NzQuaternion& quat)
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
{
NzQuaternion q(*this);
return operator=(q * quat);
return operator=(operator+(quat));
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*=(T scale)
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
{
w *= scale;
x *= scale;
y *= scale;
z *= scale;
return *this;
return operator=(operator*(quat));
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator/=(const NzQuaternion& quat)
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
{
NzQuaternion q(*this);
return operator=(operator*(scale));
}
return operator=(q / quat);
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
{
return operator=(operator/(quat));
}
template<typename T>