Documentation for Ray + New method intersection Ray-Triangle

Former-commit-id: 29989ec859e609582fdb60a67a7fb353a03091a0
This commit is contained in:
Gawaboumga 2015-12-30 15:33:55 +01:00
parent 9efce81eac
commit 137bc33770
2 changed files with 361 additions and 24 deletions

View File

@ -24,9 +24,9 @@ namespace Nz
public: public:
Ray() = default; Ray() = default;
Ray(T X, T Y, T Z, T directionX, T directionY, T directionZ); Ray(T X, T Y, T Z, T directionX, T directionY, T directionZ);
Ray(const Vector3<T>& origin, const Vector3<T>& direction);
Ray(const T origin[3], const T direction[3]); Ray(const T origin[3], const T direction[3]);
Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo); Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo);
Ray(const Vector3<T>& origin, const Vector3<T>& direction);
template<typename U> explicit Ray(const Ray<U>& ray); template<typename U> explicit Ray(const Ray<U>& ray);
template<typename U> explicit Ray(const Vector3<U>& origin, const Vector3<U>& direction); template<typename U> explicit Ray(const Vector3<U>& origin, const Vector3<U>& direction);
Ray(const Ray<T>& ray) = default; Ray(const Ray<T>& ray) = default;
@ -42,16 +42,17 @@ namespace Nz
bool Intersect(const OrientedBox<T>& orientedBox, T* closestHit = nullptr, T* furthestHit = nullptr) const; bool Intersect(const OrientedBox<T>& orientedBox, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const Plane<T>& plane, T* hit = nullptr) const; bool Intersect(const Plane<T>& plane, T* hit = nullptr) const;
bool Intersect(const Sphere<T>& sphere, T* closestHit = nullptr, T* furthestHit = nullptr) const; bool Intersect(const Sphere<T>& sphere, T* closestHit = nullptr, T* furthestHit = nullptr) const;
bool Intersect(const Vector3<T>& firstPoint, const Vector3<T>& secondPoint, const Vector3<T>& thirdPoint, T* hit = nullptr) const;
Ray& MakeAxisX(); Ray& MakeAxisX();
Ray& MakeAxisY(); Ray& MakeAxisY();
Ray& MakeAxisZ(); Ray& MakeAxisZ();
Ray& Set(T X, T Y, T Z, T directionX, T directionY, T directionZ); Ray& Set(T X, T Y, T Z, T directionX, T directionY, T directionZ);
Ray& Set(const Vector3<T>& origin, const Vector3<T>& direction);
Ray& Set(const T origin[3], const T direction[3]); Ray& Set(const T origin[3], const T direction[3]);
Ray& Set(const Plane<T>& planeOne, const Plane<T>& planeTwo); Ray& Set(const Plane<T>& planeOne, const Plane<T>& planeTwo);
Ray& Set(const Ray& ray); Ray& Set(const Ray& ray);
Ray& Set(const Vector3<T>& origin, const Vector3<T>& direction);
template<typename U> Ray& Set(const Ray<U>& ray); template<typename U> Ray& Set(const Ray<U>& ray);
template<typename U> Ray& Set(const Vector3<U>& origin, const Vector3<U>& direction); template<typename U> Ray& Set(const Vector3<U>& origin, const Vector3<U>& direction);

View File

@ -10,29 +10,77 @@
namespace Nz namespace Nz
{ {
/*!
* \class Nz::Ray<T>
* \brief Math class that represents a ray or a straight line in 3D space
*
* This ray is meant to be understood like origin + lambda * direction, where lambda is a real positive parameter
*/
/*!
* \brief Constructs a Ray<T> object from its position and direction
*
* \param X X position
* \param Y Y position
* \param Z Z position
* \param DirectionX X component of the vector direction
* \param DirectionY Y component of the vector direction
* \param DirectionY Y component of the vector direction
*/
template<typename T> template<typename T>
Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ) Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{ {
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ); Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
} }
/*!
* \brief Constructs a Ray<T> object from two Vector3
*
* \param Origin Vector which represents the origin of the ray
* \param Direction Vector which represents the direction of the ray
*/
template<typename T>
Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
Set(Origin, Direction);
}
/*!
* \brief Constructs a Ray<T> object from two arrays of three elements
*
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
*/
template<typename T> template<typename T>
Ray<T>::Ray(const T Origin[3], const T Direction[3]) Ray<T>::Ray(const T Origin[3], const T Direction[3])
{ {
Set(Origin, Direction); Set(Origin, Direction);
} }
/*!
* \brief Constructs a Ray<T> object from the intersection of two planes
*
* \param planeOne First plane
* \param planeTwo Second secant plane
*
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
*/
template<typename T> template<typename T>
Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo) Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{ {
Set(planeOne, planeTwo); Set(planeOne, planeTwo);
} }
template<typename T> /*!
Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction) * \brief Constructs a Ray<T> object from another type of Ray
{ *
Set(Origin, Direction); * \param ray Ray of type U to convert to type T
} */
template<typename T> template<typename T>
template<typename U> template<typename U>
@ -41,6 +89,13 @@ namespace Nz
Set(ray); Set(ray);
} }
/*!
* \brief Constructs a Ray<T> object from two Vector3 from another type of Ray
*
* \param Origin Origin of type U to convert to type T
* \param Direction Direction of type U to convert to type T
*/
template<typename T> template<typename T>
template<typename U> template<typename U>
Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction) Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction)
@ -48,6 +103,13 @@ namespace Nz
Set(Origin, Direction); Set(Origin, Direction);
} }
/*!
* \brief Finds the closest point of the ray from point
* \return The parameter where the point along this ray that is closest to the point provided
*
* \param point The point to get the closest approach to
*/
template<typename T> template<typename T>
T Ray<T>::ClosestPoint(const Vector3<T>& point) const T Ray<T>::ClosestPoint(const Vector3<T>& point) const
{ {
@ -55,15 +117,37 @@ namespace Nz
T vsq = direction.GetSquaredLength(); T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction); T proj = delta.DotProduct(direction);
return proj/vsq; return proj / vsq;
} }
/*!
* \brief Gets the point along the ray for this parameter
* \return The point on the ray
*
* \param lambda Parameter to obtain a particular point on the ray
*/
template<typename T> template<typename T>
Vector3<T> Ray<T>::GetPoint(T lambda) const Vector3<T> Ray<T>::GetPoint(T lambda) const
{ {
return origin + lambda * direction; return origin + lambda * direction;
} }
/*!
* \brief Checks whether or not this ray intersects with the BoundingVolume
* \return true if it intersects
*
* \param volume BoundingVolume to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \remark If BoundingVolume is Extend_Infinite, then closestHit and furthestHit are equal to 0 et infinity
* \remark If BoundingVolume is Extend_Null, then closestHit and furthestHit are unchanged
* \remark If enumeration of BoundingVolume is not defined in Extend, a NazaraError is thrown and closestHit and furthestHit are unchanged
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
{ {
@ -96,6 +180,17 @@ namespace Nz
return false; return false;
} }
/*!
* \brief Checks whether or not this ray intersects with the Box
* \return true if it intersects
*
* \param box Box to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const
{ {
@ -142,6 +237,18 @@ namespace Nz
return true; return true;
} }
/*!
* \brief Checks whether or not this ray intersects with the transform Matrix4 applied to the Box
* \return true if it intersects
*
* \param box Box to check
* \param transform Matrix4 which represents the transformation of the box
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const
{ {
@ -200,6 +307,17 @@ namespace Nz
return true; return true;
} }
/*!
* \brief Checks whether or not this ray intersects with the OrientedBox
* \return true if it intersects
*
* \param orientedBox OrientedBox to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const OrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const bool Ray<T>::Intersect(const OrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
{ {
@ -212,9 +330,9 @@ namespace Nz
// Construction de la matrice de transformation de l'OBB // Construction de la matrice de transformation de l'OBB
Matrix4<T> matrix(width.x, height.x, depth.x, corner.x, Matrix4<T> matrix(width.x, height.x, depth.x, corner.x,
width.y, height.y, depth.y, corner.y, width.y, height.y, depth.y, corner.y,
width.z, height.z, depth.z, corner.z, width.z, height.z, depth.z, corner.z,
F(0.0), F(0.0), F(0.0), F(1.0)); F(0.0), F(0.0), F(0.0), F(1.0));
matrix.InverseAffine(); matrix.InverseAffine();
@ -227,12 +345,22 @@ namespace Nz
return tmpRay.Intersect(tmpBox, closestHit, furthestHit); return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
} }
/*!
* \brief Checks whether or not this ray intersects with the plane
* \return true if it intersects
*
* \param plane Plane to check
* \param hit Optional argument to get the parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const
{ {
T divisor = plane.normal.DotProduct(direction); T divisor = plane.normal.DotProduct(direction);
if (NumberEquals(divisor, F(0.0))) if (NumberEquals(divisor, F(0.0)))
return false; // perpendicular return false; // Perpendicular
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
if (lambda < F(0.0)) if (lambda < F(0.0))
@ -244,6 +372,17 @@ namespace Nz
return true; return true;
} }
/*!
* \brief Checks whether or not this ray intersects with the sphere
* \return true if it intersects
*
* \param sphere Sphere to check
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T> template<typename T>
bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const
{ {
@ -253,8 +392,8 @@ namespace Nz
if (length < F(0.0)) if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center return false; // ray is perpendicular to the vector origin - center
T squaredDistance = sphereRay.GetSquaredLength() - length*length; T squaredDistance = sphereRay.GetSquaredLength() - length * length;
T squaredRadius = sphere.radius*sphere.radius; T squaredRadius = sphere.radius * sphere.radius;
if (squaredDistance > squaredRadius) if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius return false; // if the ray is further than the radius
@ -274,24 +413,102 @@ namespace Nz
return true; return true;
} }
/*!
* \brief Checks whether or not this ray intersects with the triangle
* \return true if it intersects
*
* \param firstPoint First vertex of the triangle
* \param secondPoint Second vertex of the triangle
* \param thirdPoint Third vertex of the triangle
* \param hit Optional argument to get the parameter where the intersection is only if it happened
*
* \see Intersect
*/
template<typename T>
bool Ray<T>::Intersect(const Vector3<T>& firstPoint, const Vector3<T>& secondPoint, const Vector3<T>& thirdPoint, T* hit) const
{
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
Vector3<T> firstEdge = secondPoint - firstPoint;
Vector3<T> secondEdge = thirdPoint - firstPoint;
Vector3<T> P = Vector3<T>::CrossProduct(direction, secondEdge);
const T divisor = firstEdge.DotProduct(P);
if (NumberEquals(divisor, F(0.0)))
return false; // Ray lies in plane of triangle
Vector3<T> directionToPoint = origin - firstPoint;
T u = directionToPoint.DotProduct(P) / divisor;
if (u < F(0.0) || u > F(1.0))
return 0; // The intersection lies outside of the triangle
Vector3<T> Q = Vector3<T>::CrossProduct(directionToPoint, firstEdge);
T v = directionToPoint.DotProduct(Q) / divisor;
if (v < F(0.0) || u + v > F(1.0))
return 0; // The intersection lies outside of the triangle
T t = secondEdge.DotProduct(Q) / divisor;
if (t > F(0.0))
{
if (hit)
*hit = t;
return true;
}
return false;
}
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (1, 0, 0)
* \return A reference to this ray with position (0, 0, 0) and direction (1, 0, 0)
*
* \see AxisX
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::MakeAxisX() Ray<T>& Ray<T>::MakeAxisX()
{ {
return Set(Vector3<T>::Zero(), Vector3<T>::UnitX()); return Set(Vector3<T>::Zero(), Vector3<T>::UnitX());
} }
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (0, 1, 0)
* \return A reference to this ray with position (0, 0, 0) and direction (0, 1, 0)
*
* \see AxisY
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::MakeAxisY() Ray<T>& Ray<T>::MakeAxisY()
{ {
return Set(Vector3<T>::Zero(), Vector3<T>::UnitY()); return Set(Vector3<T>::Zero(), Vector3<T>::UnitY());
} }
/*!
* \brief Makes the ray with position (0, 0, 0) and direction (0, 0, 1)
* \return A reference to this ray with position (0, 0, 0) and direction (0, 0, 1)
*
* \see AxisZ
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::MakeAxisZ() Ray<T>& Ray<T>::MakeAxisZ()
{ {
return Set(Vector3<T>::Zero(), Vector3<T>::UnitZ()); return Set(Vector3<T>::Zero(), Vector3<T>::UnitZ());
} }
/*!
* \brief Sets the components of the ray with position and direction
* \return A reference to this ray
*
* \param X X position
* \param Y Y position
* \param Z Z position
* \param DirectionX X component of the vector direction
* \param DirectionY Y component of the vector direction
* \param DirectionY Y component of the vector direction
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ) Ray<T>& Ray<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{ {
@ -301,6 +518,31 @@ namespace Nz
return *this; return *this;
} }
/*!
* \brief Sets the components of the ray with position and direction
* \return A reference to this ray
*
* \param Origin Vector which represents the origin of the ray
* \param Direction Vector which represents the direction of the ray
*/
template<typename T>
Ray<T>& Ray<T>::Set(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
/*!
* \brief Sets the components of this ray from two arrays of three elements
* \return A reference to this ray
*
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::Set(const T Origin[3], const T Direction[3]) Ray<T>& Ray<T>::Set(const T Origin[3], const T Direction[3])
{ {
@ -310,6 +552,17 @@ namespace Nz
return *this; return *this;
} }
/*!
* \brief Sets the components of this ray from the intersection of two planes
* \return A reference to this ray
*
* \param planeOne First plane
* \param planeTwo Second secant plane
*
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::Set(const Plane<T>& planeOne, const Plane<T>& planeTwo) Ray<T>& Ray<T>::Set(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{ {
@ -321,7 +574,7 @@ namespace Nz
#if NAZARA_MATH_SAFE #if NAZARA_MATH_SAFE
if (NumberEquals(det, F(0.0))) if (NumberEquals(det, F(0.0)))
{ {
String error("Planes are parallel."); String error("Planes are parallel");
NazaraError(error); NazaraError(error);
throw std::domain_error(error); throw std::domain_error(error);
@ -338,6 +591,13 @@ namespace Nz
return *this; return *this;
} }
/*!
* \brief Sets the components of the ray with components from another
* \return A reference to this ray
*
* \param ray The other ray
*/
template<typename T> template<typename T>
Ray<T>& Ray<T>::Set(const Ray& ray) Ray<T>& Ray<T>::Set(const Ray& ray)
{ {
@ -346,14 +606,12 @@ namespace Nz
return *this; return *this;
} }
template<typename T> /*!
Ray<T>& Ray<T>::Set(const Vector3<T>& Origin, const Vector3<T>& Direction) * \brief Sets the components of the ray from another type of Ray
{ * \return A reference to this ray
direction = Direction; *
origin = Origin; * \param ray Ray of type U to convert its components
*/
return *this;
}
template<typename T> template<typename T>
template<typename U> template<typename U>
@ -365,6 +623,14 @@ namespace Nz
return *this; return *this;
} }
/*!
* \brief Sets the components of the ray from another type of Ray
* \return A reference to this ray
*
* \param Origin Origin of type U to convert to type T
* \param Direction Direction of type U to convert to type T
*/
template<typename T> template<typename T>
template<typename U> template<typename U>
Ray<T>& Ray<T>::Set(const Vector3<U>& Origin, const Vector3<U>& Direction) Ray<T>& Ray<T>::Set(const Vector3<U>& Origin, const Vector3<U>& Direction)
@ -375,6 +641,11 @@ namespace Nz
return *this; return *this;
} }
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Ray(origin: Vector3(origin.x, origin.y, origin.z), direction: Vector3(direction.x, direction.y, direction.z))"
*/
template<typename T> template<typename T>
String Ray<T>::ToString() const String Ray<T>::ToString() const
{ {
@ -383,24 +654,54 @@ namespace Nz
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")"; return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
} }
/*!
* \brief Multiplies the direction ray with the lambda to get the point along the ray for this parameter
* \return The point on the ray
*
* \param lambda Parameter to obtain a particular point on the ray
*
* \see GetPoint
*/
template<typename T> template<typename T>
Vector3<T> Ray<T>::operator*(T lambda) const Vector3<T> Ray<T>::operator*(T lambda) const
{ {
return GetPoint(lambda); return GetPoint(lambda);
} }
/*!
* \brief Compares the ray to other one
* \return true if the ray are the same
*
* \param rec Other ray to compare with
*/
template<typename T> template<typename T>
bool Ray<T>::operator==(const Ray& ray) const bool Ray<T>::operator==(const Ray& ray) const
{ {
return direction == ray.direction && origin == ray.origin; return direction == ray.direction && origin == ray.origin;
} }
/*!
* \brief Compares the ray to other one
* \return false if the ray are the same
*
* \param rec Other ray to compare with
*/
template<typename T> template<typename T>
bool Ray<T>::operator!=(const Ray& ray) const bool Ray<T>::operator!=(const Ray& ray) const
{ {
return !operator==(ray); return !operator==(ray);
} }
/*!
* \brief Shorthand for the ray (0, 0, 0), (1, 0, 0)
* \return A ray with position (0, 0, 0) and direction (1, 0, 0)
*
* \see MakeAxisX
*/
template<typename T> template<typename T>
Ray<T> Ray<T>::AxisX() Ray<T> Ray<T>::AxisX()
{ {
@ -410,6 +711,13 @@ namespace Nz
return axis; return axis;
} }
/*!
* \brief Shorthand for the ray (0, 0, 0), (0, 1, 0)
* \return A ray with position (0, 0, 0) and direction (0, 1, 0)
*
* \see MakeAxisY
*/
template<typename T> template<typename T>
Ray<T> Ray<T>::AxisY() Ray<T> Ray<T>::AxisY()
{ {
@ -419,6 +727,13 @@ namespace Nz
return axis; return axis;
} }
/*!
* \brief Shorthand for the ray (0, 0, 0), (0, 0, 1)
* \return A ray with position (0, 0, 0) and direction (0, 0, 1)
*
* \see MakeAxisZ
*/
template<typename T> template<typename T>
Ray<T> Ray<T>::AxisZ() Ray<T> Ray<T>::AxisZ()
{ {
@ -428,13 +743,34 @@ namespace Nz
return axis; return axis;
} }
/*!
* \brief Interpolates the ray to other one with a factor of interpolation
* \return A new ray which is the interpolation of two rectangles
*
* \param from Initial ray
* \param to Target ray
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
*
* \see Lerp
*/
template<typename T> template<typename T>
Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation) Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation)
{ {
return Ray<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation)); return Ray<T>(Nz::Vector3<T>::Lerp(from.origin, to.origin, interpolation), Nz::Vector3<T>::Lerp(from.direction, to.direction, interpolation));
} }
} }
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param ray The ray to output
*/
template<typename T> template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray) std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray)
{ {