Switch from Nz prefix to namespace Nz for linux

Former-commit-id: 64eeaf3c633254b04910ebd4576fd9e910002be0
This commit is contained in:
Youri Hubaut
2015-09-27 15:58:49 +02:00
parent 752518ef14
commit 37586e7283
49 changed files with 3918 additions and 3732 deletions

View File

@@ -8,21 +8,24 @@
#include <sys/time.h>
#include <Nazara/Core/Debug.hpp>
bool NzClockImplInitializeHighPrecision()
namespace Nz
{
return true; // No initialization needed
}
bool ClockImplInitializeHighPrecision()
{
return true; // No initialization needed
}
nzUInt64 NzClockImplGetMicroseconds()
{
timeval clock;
gettimeofday(&clock, nullptr);
return static_cast<nzUInt64>(clock.tv_sec*1000000 + clock.tv_usec);
}
UInt64 ClockImplGetElapsedMicroseconds()
{
timeval clock;
gettimeofday(&clock, nullptr);
return static_cast<UInt64>(clock.tv_sec*1000000 + clock.tv_usec);
}
nzUInt64 NzClockImplGetMilliseconds()
{
timeval clock;
gettimeofday(&clock, nullptr);
return static_cast<nzUInt64>(clock.tv_sec*1000 + (clock.tv_usec/1000));
UInt64 ClockImplGetElapsedMilliseconds()
{
timeval clock;
gettimeofday(&clock, nullptr);
return static_cast<UInt64>(clock.tv_sec*1000 + (clock.tv_usec/1000));
}
}

View File

@@ -9,8 +9,11 @@
#include <Nazara/Prerequesites.hpp>
bool NzClockImplInitializeHighPrecision();
nzUInt64 NzClockImplGetMicroseconds();
nzUInt64 NzClockImplGetMilliseconds();
namespace Nz
{
bool ClockImplInitializeHighPrecision();
UInt64 ClockImplGetElapsedMicroseconds();
UInt64 ClockImplGetElapsedMilliseconds();
}
#endif // NAZARA_CLOCKIMPL_POSIX_HPP

View File

@@ -6,42 +6,45 @@
#include <Nazara/Core/Posix/MutexImpl.hpp>
#include <Nazara/Core/Debug.hpp>
NzConditionVariableImpl::NzConditionVariableImpl()
namespace Nz
{
pthread_cond_init(&m_cv, nullptr);
}
NzConditionVariableImpl::~NzConditionVariableImpl()
{
pthread_cond_destroy(&m_cv);
}
void NzConditionVariableImpl::Signal()
{
pthread_cond_signal(&m_cv);
}
void NzConditionVariableImpl::SignalAll()
{
pthread_cond_broadcast(&m_cv);
}
void NzConditionVariableImpl::Wait(NzMutexImpl* mutex)
{
pthread_cond_wait(&m_cv, &mutex->m_handle);
}
bool NzConditionVariableImpl::Wait(NzMutexImpl* mutex, nzUInt32 timeout)
{
// get the current time
timeval tv;
gettimeofday(&tv, nullptr);
// construct the time limit (current time + time to wait)
timespec ti;
ti.tv_nsec = (tv.tv_usec + (timeout % 1000)) * 1000000;
ti.tv_sec = tv.tv_sec + (timeout / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
return pthread_cond_timedwait(&m_cv,&mutex->m_handle, &ti) != 0;
ConditionVariableImpl::ConditionVariableImpl()
{
pthread_cond_init(&m_cv, nullptr);
}
ConditionVariableImpl::~ConditionVariableImpl()
{
pthread_cond_destroy(&m_cv);
}
void ConditionVariableImpl::Signal()
{
pthread_cond_signal(&m_cv);
}
void ConditionVariableImpl::SignalAll()
{
pthread_cond_broadcast(&m_cv);
}
void ConditionVariableImpl::Wait(MutexImpl* mutex)
{
pthread_cond_wait(&m_cv, &mutex->m_handle);
}
bool ConditionVariableImpl::Wait(MutexImpl* mutex, UInt32 timeout)
{
// get the current time
timeval tv;
gettimeofday(&tv, nullptr);
// construct the time limit (current time + time to wait)
timespec ti;
ti.tv_nsec = (tv.tv_usec + (timeout % 1000)) * 1000000;
ti.tv_sec = tv.tv_sec + (timeout / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
return pthread_cond_timedwait(&m_cv,&mutex->m_handle, &ti) != 0;
}
}

View File

@@ -14,22 +14,25 @@
#include <unistd.h>
#include <sys/time.h>
class NzMutexImpl;
class NzConditionVariableImpl
namespace Nz
{
public:
NzConditionVariableImpl();
~NzConditionVariableImpl();
class MutexImpl;
void Signal();
void SignalAll();
class ConditionVariableImpl
{
public:
ConditionVariableImpl();
~ConditionVariableImpl();
void Wait(NzMutexImpl* mutex);
bool Wait(NzMutexImpl* mutex, nzUInt32 timeout);
void Signal();
void SignalAll();
private:
pthread_cond_t m_cv;
};
void Wait(MutexImpl* mutex);
bool Wait(MutexImpl* mutex, UInt32 timeout);
private:
pthread_cond_t m_cv;
};
}
#endif // NAZARA_CONDITIONVARIABLEIMPL_HPP

View File

@@ -9,95 +9,98 @@
#include <errno.h>
#include <sys/param.h>
NzDirectoryImpl::NzDirectoryImpl(const NzDirectory* parent)
namespace Nz
{
NazaraUnused(parent);
}
DirectoryImpl::DirectoryImpl(const Directory* parent)
{
NazaraUnused(parent);
}
void NzDirectoryImpl::Close()
{
closedir(m_handle);
}
void DirectoryImpl::Close()
{
closedir(m_handle);
}
NzString NzDirectoryImpl::GetResultName() const
{
return m_result->d_name;
}
String DirectoryImpl::GetResultName() const
{
return m_result->d_name;
}
nzUInt64 NzDirectoryImpl::GetResultSize() const
{
struct stat64 resulststat;
stat64(m_result->d_name, &resulststat);
UInt64 DirectoryImpl::GetResultSize() const
{
struct stat64 resulststat;
stat64(m_result->d_name, &resulststat);
return static_cast<nzUInt64>(resulststat.st_size);
}
return static_cast<UInt64>(resulststat.st_size);
}
bool NzDirectoryImpl::IsResultDirectory() const
{
struct stat64 filestats;
if (stat64(m_result->d_name, &filestats) == -1) // error
return false;
bool DirectoryImpl::IsResultDirectory() const
{
struct stat64 filestats;
if (stat64(m_result->d_name, &filestats) == -1) // error
return false;
return S_ISDIR(filestats.st_mode);
}
return S_ISDIR(filestats.st_mode);
}
bool DirectoryImpl::NextResult()
{
if ((m_result = readdir64(m_handle)))
return true;
else
{
if (errno != ENOENT)
NazaraError("Unable to get next result: " + Error::GetLastSystemError());
return false;
}
}
bool DirectoryImpl::Open(const String& dirPath)
{
m_handle = opendir(dirPath.GetConstBuffer());
if (!m_handle)
{
NazaraError("Unable to open directory: " + Error::GetLastSystemError());
return false;
}
bool NzDirectoryImpl::NextResult()
{
if ((m_result = readdir64(m_handle)))
return true;
else
{
if (errno != ENOENT)
NazaraError("Unable to get next result: " + NzError::GetLastSystemError());
return false;
}
}
bool NzDirectoryImpl::Open(const NzString& dirPath)
{
m_handle = opendir(dirPath.GetConstBuffer());
if (!m_handle)
{
NazaraError("Unable to open directory: " + NzError::GetLastSystemError());
return false;
}
return true;
}
bool NzDirectoryImpl::Create(const NzString& dirPath)
{
mode_t permissions; // TODO: check permissions
return mkdir(dirPath.GetConstBuffer(), permissions) != -1;;
}
bool NzDirectoryImpl::Exists(const NzString& dirPath)
{
struct stat64 filestats;
if (stat64(dirPath.GetConstBuffer(), &filestats) == -1) // error
return false;
return S_ISDIR(filestats.st_mode) || S_ISREG(filestats.st_mode);
}
NzString NzDirectoryImpl::GetCurrent()
{
NzString currentPath;
char path[MAXPATHLEN];
if (getcwd(path, MAXPATHLEN))
currentPath = path;
else
NazaraError("Unable to get current directory: " + NzError::GetLastSystemError()); // Bug: initialisation -> if no path for log !
return currentPath;
}
bool NzDirectoryImpl::Remove(const NzString& dirPath)
{
bool success = rmdir(dirPath.GetConstBuffer()) != -1;
return success;
bool DirectoryImpl::Create(const String& dirPath)
{
mode_t permissions; // TODO: check permissions
return mkdir(dirPath.GetConstBuffer(), permissions) != -1;;
}
bool DirectoryImpl::Exists(const String& dirPath)
{
struct stat64 filestats;
if (stat64(dirPath.GetConstBuffer(), &filestats) == -1) // error
return false;
return S_ISDIR(filestats.st_mode) || S_ISREG(filestats.st_mode);
}
String DirectoryImpl::GetCurrent()
{
String currentPath;
char path[MAXPATHLEN];
if (getcwd(path, MAXPATHLEN))
currentPath = path;
else
NazaraError("Unable to get current directory: " + Error::GetLastSystemError()); // Bug: initialisation -> if no path for log !
return currentPath;
}
bool DirectoryImpl::Remove(const String& dirPath)
{
bool success = rmdir(dirPath.GetConstBuffer()) != -1;
return success;
}
}

View File

@@ -8,40 +8,47 @@
#define NAZARA_DIRECTORYIMPL_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Core/NonCopyable.hpp>
#include <dirent.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
class NzDirectory;
class NzString;
class NzDirectoryImpl : NzNonCopyable
namespace Nz
{
public:
NzDirectoryImpl(const NzDirectory* parent);
~NzDirectoryImpl() = default;
class Directory;
class String;
void Close();
class DirectoryImpl
{
public:
DirectoryImpl(const Directory* parent);
DirectoryImpl(const DirectoryImpl&) = delete;
DirectoryImpl(DirectoryImpl&&) = delete; ///TODO
~DirectoryImpl() = default;
NzString GetResultName() const;
nzUInt64 GetResultSize() const;
void Close();
bool IsResultDirectory() const;
String GetResultName() const;
UInt64 GetResultSize() const;
bool NextResult();
bool IsResultDirectory() const;
bool Open(const NzString& dirPath);
bool NextResult();
static bool Create(const NzString& dirPath);
static bool Exists(const NzString& dirPath);
static NzString GetCurrent();
static bool Remove(const NzString& dirPath);
bool Open(const String& dirPath);
private:
DIR* m_handle;
dirent64* m_result;
};
DirectoryImpl& operator=(const DirectoryImpl&) = delete;
DirectoryImpl& operator=(DirectoryImpl&&) = delete; ///TODO
static bool Create(const String& dirPath);
static bool Exists(const String& dirPath);
static String GetCurrent();
static bool Remove(const String& dirPath);
private:
DIR* m_handle;
dirent64* m_result;
};
}
#endif // NAZARA_DIRECTORYIMPL_HPP

View File

@@ -8,55 +8,58 @@
#include <Nazara/Core/String.hpp>
#include <Nazara/Core/Debug.hpp>
NzDynLibImpl::NzDynLibImpl(NzDynLib* parent)
namespace Nz
{
NazaraUnused(parent);
}
NzDynLibFunc NzDynLibImpl::GetSymbol(const NzString& symbol, NzString* errorMessage) const
{
/*
Il n'est pas standard de cast un pointeur d'objet vers un pointeur de fonction.
Nous devons donc utiliser des techniques diaboliques venant du malin lui-même.. :D
Au moins ce n'est pas aussi terrible qu'un const_cast
-Lynix
*/
union
DynLibImpl::DynLibImpl(DynLib* parent)
{
NzDynLibFunc func;
void* pointer;
} converter;
NazaraUnused(parent);
}
dlerror(); // Clear error flag
converter.pointer = dlsym(m_handle, symbol.GetConstBuffer());
if (!converter.pointer)
*errorMessage = dlerror();
return converter.func;
}
bool NzDynLibImpl::Load(const NzString& libraryPath, NzString* errorMessage)
{
NzString path = libraryPath;
unsigned int pos = path.FindLast(".so");
if (pos == NzString::npos || (path.GetLength() > pos+3 && path[pos+3] != '.'))
path += ".so";
dlerror(); // Clear error flag
m_handle = dlopen(path.GetConstBuffer(), RTLD_LAZY | RTLD_GLOBAL);
if (m_handle)
return true;
else
DynLibFunc DynLibImpl::GetSymbol(const String& symbol, String* errorMessage) const
{
*errorMessage = dlerror();
return false;
/*
Il n'est pas standard de cast un pointeur d'objet vers un pointeur de fonction.
Nous devons donc utiliser des techniques diaboliques venant du malin lui-même.. :D
Au moins ce n'est pas aussi terrible qu'un const_cast
-Lynix
*/
union
{
DynLibFunc func;
void* pointer;
} converter;
dlerror(); // Clear error flag
converter.pointer = dlsym(m_handle, symbol.GetConstBuffer());
if (!converter.pointer)
*errorMessage = dlerror();
return converter.func;
}
bool DynLibImpl::Load(const String& libraryPath, String* errorMessage)
{
String path = libraryPath;
unsigned int pos = path.FindLast(".so");
if (pos == String::npos || (path.GetLength() > pos+3 && path[pos+3] != '.'))
path += ".so";
dlerror(); // Clear error flag
m_handle = dlopen(path.GetConstBuffer(), RTLD_LAZY | RTLD_GLOBAL);
if (m_handle)
return true;
else
{
*errorMessage = dlerror();
return false;
}
}
void DynLibImpl::Unload()
{
dlclose(m_handle);
}
}
void NzDynLibImpl::Unload()
{
dlclose(m_handle);
}

View File

@@ -8,23 +8,25 @@
#define NAZARA_DYNLIBIMPL_HPP
#include <Nazara/Core/DynLib.hpp>
#include <Nazara/Core/NonCopyable.hpp>
#include <dlfcn.h>
class NzString;
class NzDynLibImpl : NzNonCopyable
namespace Nz
{
public:
NzDynLibImpl(NzDynLib* m_parent);
~NzDynLibImpl() = default;
class String;
NzDynLibFunc GetSymbol(const NzString& symbol, NzString* errorMessage) const;
bool Load(const NzString& libraryPath, NzString* errorMessage);
void Unload();
class DynLibImpl
{
public:
DynLibImpl(DynLib* m_parent);
~DynLibImpl() = default;
private:
void* m_handle;
};
DynLibFunc GetSymbol(const String& symbol, String* errorMessage) const;
bool Load(const String& libraryPath, String* errorMessage);
void Unload();
private:
void* m_handle;
};
}
#endif // NAZARA_DYNLIBIMPL_HPP

View File

@@ -7,236 +7,239 @@
#include <cstdio>
#include <Nazara/Core/Debug.hpp>
NzFileImpl::NzFileImpl(const NzFile* parent) :
m_endOfFile(false),
m_endOfFileUpdated(true)
namespace Nz
{
NazaraUnused(parent);
}
void NzFileImpl::Close()
{
close(m_fileDescriptor);
}
bool NzFileImpl::EndOfFile() const
{
if (!m_endOfFileUpdated)
FileImpl::FileImpl(const File* parent) :
m_endOfFile(false),
m_endOfFileUpdated(true)
{
struct stat64 fileSize;
if (fstat64(m_fileDescriptor, &fileSize) == -1)
fileSize.st_size = 0;
m_endOfFile = (GetCursorPos() >= static_cast<nzUInt64>(fileSize.st_size));
m_endOfFileUpdated = true;
NazaraUnused(parent);
}
return m_endOfFile;
}
void NzFileImpl::Flush()
{
if (fsync(m_fileDescriptor) == -1)
NazaraError("Unable to flush file: " + NzError::GetLastSystemError());
}
nzUInt64 NzFileImpl::GetCursorPos() const
{
off64_t position = lseek64(m_fileDescriptor, 0, SEEK_CUR);
return static_cast<nzUInt64>(position);
}
bool NzFileImpl::Open(const NzString& filePath, unsigned int mode)
{
int flags;
mode_t permissions = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
if (mode & nzOpenMode_ReadOnly)
flags = O_RDONLY;
else if (mode & nzOpenMode_ReadWrite)
void FileImpl::Close()
{
flags = O_CREAT | O_RDWR;
if (mode & nzOpenMode_Append)
flags |= O_APPEND;
if (mode & nzOpenMode_Truncate)
flags |= O_TRUNC;
}
else if (mode & nzOpenMode_WriteOnly)
{
flags = O_CREAT | O_WRONLY;
if (mode & nzOpenMode_Append)
flags |= O_APPEND;
if (mode & nzOpenMode_Truncate)
flags |= O_TRUNC;
}
else
return false;
///TODO: lock
// if ((mode & nzOpenMode_Lock) == 0)
// shareMode |= FILE_SHARE_WRITE;
m_fileDescriptor = open64(filePath.GetConstBuffer(), flags, permissions);
return m_fileDescriptor != -1;
}
std::size_t NzFileImpl::Read(void* buffer, std::size_t size)
{
ssize_t bytes;
if ((bytes = read(m_fileDescriptor, buffer, size)) != -1)
{
m_endOfFile = (static_cast<std::size_t>(bytes) != size);
m_endOfFileUpdated = true;
return static_cast<std::size_t>(bytes);
}
else
return 0;
}
bool NzFileImpl::SetCursorPos(nzCursorPosition pos, nzInt64 offset)
{
int moveMethod;
switch (pos)
{
case nzCursorPosition_AtBegin:
moveMethod = SEEK_SET;
break;
case nzCursorPosition_AtCurrent:
moveMethod = SEEK_CUR;
break;
case nzCursorPosition_AtEnd:
moveMethod = SEEK_END;
break;
default:
NazaraInternalError("Cursor position not handled (0x" + NzString::Number(pos, 16) + ')');
return false;
close(m_fileDescriptor);
}
m_endOfFileUpdated = false;
return lseek64(m_fileDescriptor, offset, moveMethod) != -1;
}
std::size_t NzFileImpl::Write(const void* buffer, std::size_t size)
{
lockf64(m_fileDescriptor, F_LOCK, size);
ssize_t written = write(m_fileDescriptor, buffer, size);
lockf64(m_fileDescriptor, F_ULOCK, size);
m_endOfFileUpdated = false;
return written;
}
bool NzFileImpl::Copy(const NzString& sourcePath, const NzString& targetPath)
{
int fd1 = open64(sourcePath.GetConstBuffer(), O_RDONLY);
if (fd1 == -1)
bool FileImpl::EndOfFile() const
{
NazaraError("Fail to open input file (" + sourcePath + "): " + NzError::GetLastSystemError());
return false;
}
mode_t permissions; // TODO : get permission from first file
int fd2 = open64(targetPath.GetConstBuffer(), O_WRONLY | O_TRUNC, permissions);
if (fd2 == -1)
{
NazaraError("Fail to open output file (" + targetPath + "): " + NzError::GetLastSystemError()); // TODO: more info ?
close(fd1);
return false;
}
char buffer[512];
ssize_t bytes;
do
{
bytes = read(fd1,buffer,512);
if (bytes == -1)
if (!m_endOfFileUpdated)
{
close(fd1);
close(fd2);
NazaraError("An error occured from copy : " + NzError::GetLastSystemError());
struct stat64 fileSize;
if (fstat64(m_fileDescriptor, &fileSize) == -1)
fileSize.st_size = 0;
m_endOfFile = (GetCursorPos() >= static_cast<UInt64>(fileSize.st_size));
m_endOfFileUpdated = true;
}
return m_endOfFile;
}
void FileImpl::Flush()
{
if (fsync(m_fileDescriptor) == -1)
NazaraError("Unable to flush file: " + Error::GetLastSystemError());
}
UInt64 FileImpl::GetCursorPos() const
{
off64_t position = lseek64(m_fileDescriptor, 0, SEEK_CUR);
return static_cast<UInt64>(position);
}
bool FileImpl::Open(const String& filePath, unsigned int mode)
{
int flags;
mode_t permissions = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
if (mode & OpenMode_ReadOnly)
flags = O_RDONLY;
else if (mode & OpenMode_ReadWrite)
{
flags = O_CREAT | O_RDWR;
if (mode & OpenMode_Append)
flags |= O_APPEND;
if (mode & OpenMode_Truncate)
flags |= O_TRUNC;
}
else if (mode & OpenMode_WriteOnly)
{
flags = O_CREAT | O_WRONLY;
if (mode & OpenMode_Append)
flags |= O_APPEND;
if (mode & OpenMode_Truncate)
flags |= O_TRUNC;
}
else
return false;
///TODO: lock
// if ((mode & OpenMode_Lock) == 0)
// shareMode |= FILE_SHARE_WRITE;
m_fileDescriptor = open64(filePath.GetConstBuffer(), flags, permissions);
return m_fileDescriptor != -1;
}
std::size_t FileImpl::Read(void* buffer, std::size_t size)
{
ssize_t bytes;
if ((bytes = read(m_fileDescriptor, buffer, size)) != -1)
{
m_endOfFile = (static_cast<std::size_t>(bytes) != size);
m_endOfFileUpdated = true;
return static_cast<std::size_t>(bytes);
}
else
return 0;
}
bool FileImpl::SetCursorPos(CursorPosition pos, Int64 offset)
{
int moveMethod;
switch (pos)
{
case CursorPosition_AtBegin:
moveMethod = SEEK_SET;
break;
case CursorPosition_AtCurrent:
moveMethod = SEEK_CUR;
break;
case CursorPosition_AtEnd:
moveMethod = SEEK_END;
break;
default:
NazaraInternalError("Cursor position not handled (0x" + String::Number(pos, 16) + ')');
return false;
}
m_endOfFileUpdated = false;
return lseek64(m_fileDescriptor, offset, moveMethod) != -1;
}
std::size_t FileImpl::Write(const void* buffer, std::size_t size)
{
lockf64(m_fileDescriptor, F_LOCK, size);
ssize_t written = write(m_fileDescriptor, buffer, size);
lockf64(m_fileDescriptor, F_ULOCK, size);
m_endOfFileUpdated = false;
return written;
}
bool FileImpl::Copy(const String& sourcePath, const String& targetPath)
{
int fd1 = open64(sourcePath.GetConstBuffer(), O_RDONLY);
if (fd1 == -1)
{
NazaraError("Fail to open input file (" + sourcePath + "): " + Error::GetLastSystemError());
return false;
}
write(fd2,buffer,bytes);
}
while (bytes == 512);
close(fd1);
close(fd2);
return true;
}
mode_t permissions; // TODO : get permission from first file
int fd2 = open64(targetPath.GetConstBuffer(), O_WRONLY | O_TRUNC, permissions);
if (fd2 == -1)
{
NazaraError("Fail to open output file (" + targetPath + "): " + Error::GetLastSystemError()); // TODO: more info ?
close(fd1);
return false;
}
bool NzFileImpl::Delete(const NzString& filePath)
{
bool success = unlink(filePath.GetConstBuffer()) != -1;
char buffer[512];
ssize_t bytes;
do
{
bytes = read(fd1,buffer,512);
if (bytes == -1)
{
close(fd1);
close(fd2);
NazaraError("An error occured from copy : " + Error::GetLastSystemError());
return false;
}
write(fd2,buffer,bytes);
}
while (bytes == 512);
if (success)
close(fd1);
close(fd2);
return true;
else
}
bool FileImpl::Delete(const String& filePath)
{
NazaraError("Failed to delete file (" + filePath + "): " + NzError::GetLastSystemError());
bool success = unlink(filePath.GetConstBuffer()) != -1;
if (success)
return true;
else
{
NazaraError("Failed to delete file (" + filePath + "): " + Error::GetLastSystemError());
return false;
}
}
bool FileImpl::Exists(const String& filePath)
{
const char* path = filePath.GetConstBuffer();
if (access(path, F_OK) != -1)
return true;
return false;
}
}
bool NzFileImpl::Exists(const NzString& filePath)
{
const char* path = filePath.GetConstBuffer();
if (access(path, F_OK) != -1)
return true;
return false;
}
time_t NzFileImpl::GetCreationTime(const NzString& filePath)
{
NazaraWarning("Posix has no creation time information");
return 0;
}
time_t NzFileImpl::GetLastAccessTime(const NzString& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return stats.st_atime;
}
time_t NzFileImpl::GetLastWriteTime(const NzString& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return stats.st_mtime;
}
nzUInt64 NzFileImpl::GetSize(const NzString& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return static_cast<nzUInt64>(stats.st_size);
}
bool NzFileImpl::Rename(const NzString& sourcePath, const NzString& targetPath)
{
bool success = std::rename(sourcePath.GetConstBuffer(), targetPath.GetConstBuffer()) != -1;
if (success)
return true;
else
time_t FileImpl::GetCreationTime(const String& filePath)
{
NazaraError("Unable to rename file: " + NzError::GetLastSystemError());
return false;
NazaraWarning("Posix has no creation time information");
return 0;
}
time_t FileImpl::GetLastAccessTime(const String& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return stats.st_atime;
}
time_t FileImpl::GetLastWriteTime(const String& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return stats.st_mtime;
}
UInt64 FileImpl::GetSize(const String& filePath)
{
struct stat64 stats;
stat64(filePath.GetConstBuffer(), &stats);
return static_cast<UInt64>(stats.st_size);
}
bool FileImpl::Rename(const String& sourcePath, const String& targetPath)
{
bool success = std::rename(sourcePath.GetConstBuffer(), targetPath.GetConstBuffer()) != -1;
if (success)
return true;
else
{
NazaraError("Unable to rename file: " + Error::GetLastSystemError());
return false;
}
}
}

View File

@@ -13,44 +13,51 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Core/File.hpp>
#include <Nazara/Core/NonCopyable.hpp>
#include <ctime>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
class NzFile;
class NzString;
class NzFileImpl : NzNonCopyable
namespace Nz
{
public:
NzFileImpl(const NzFile* parent);
~NzFileImpl() = default;
class File;
class String;
void Close();
bool EndOfFile() const;
void Flush();
nzUInt64 GetCursorPos() const;
bool Open(const NzString& filePath, unsigned int mode);
std::size_t Read(void* buffer, std::size_t size);
bool SetCursorPos(nzCursorPosition pos, nzInt64 offset);
std::size_t Write(const void* buffer, std::size_t size);
class FileImpl
{
public:
FileImpl(const File* parent);
FileImpl(const FileImpl&) = delete;
FileImpl(FileImpl&&) = delete; ///TODO
~FileImpl() = default;
static bool Copy(const NzString& sourcePath, const NzString& targetPath);
static bool Delete(const NzString& filePath);
static bool Exists(const NzString& filePath);
static time_t GetCreationTime(const NzString& filePath);
static time_t GetLastAccessTime(const NzString& filePath);
static time_t GetLastWriteTime(const NzString& filePath);
static nzUInt64 GetSize(const NzString& filePath);
static bool Rename(const NzString& sourcePath, const NzString& targetPath);
void Close();
bool EndOfFile() const;
void Flush();
UInt64 GetCursorPos() const;
bool Open(const String& filePath, unsigned int mode);
std::size_t Read(void* buffer, std::size_t size);
bool SetCursorPos(CursorPosition pos, Int64 offset);
std::size_t Write(const void* buffer, std::size_t size);
private:
int m_fileDescriptor;
mutable bool m_endOfFile;
mutable bool m_endOfFileUpdated;
};
FileImpl& operator=(const FileImpl&) = delete;
FileImpl& operator=(FileImpl&&) = delete; ///TODO
static bool Copy(const String& sourcePath, const String& targetPath);
static bool Delete(const String& filePath);
static bool Exists(const String& filePath);
static time_t GetCreationTime(const String& filePath);
static time_t GetLastAccessTime(const String& filePath);
static time_t GetLastWriteTime(const String& filePath);
static UInt64 GetSize(const String& filePath);
static bool Rename(const String& sourcePath, const String& targetPath);
private:
int m_fileDescriptor;
mutable bool m_endOfFile;
mutable bool m_endOfFileUpdated;
};
}
#endif // NAZARA_FILEIMPL_HPP

View File

@@ -6,58 +6,61 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Debug.hpp>
void NzHardwareInfoImpl::Cpuid(nzUInt32 functionId, nzUInt32 subFunctionId, nzUInt32 registers[4])
namespace Nz
{
#if defined(NAZARA_COMPILER_CLANG) || defined(NAZARA_COMPILER_GCC) || defined(NAZARA_COMPILER_INTEL)
// Source: http://stackoverflow.com/questions/1666093/cpuid-implementations-in-c
asm volatile ("cpuid" // Besoin d'être volatile ?
: "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]) // output
: "a" (functionId), "c" (subFunctionId)); // input
#else
NazaraInternalError("Cpuid has been called although it is not supported");
#endif
}
unsigned int NzHardwareInfoImpl::GetProcessorCount()
{
// Plus simple (et plus portable) que de passer par le CPUID
return sysconf(_SC_NPROCESSORS_CONF);
}
nzUInt64 NzHardwareInfoImpl::GetTotalMemory()
{
nzUInt64 pages = sysconf(_SC_PHYS_PAGES);
nzUInt64 page_size = sysconf(_SC_PAGE_SIZE);
return pages * page_size;
}
bool NzHardwareInfoImpl::IsCpuidSupported()
{
#ifdef NAZARA_PLATFORM_x64
return true; // Toujours supporté sur un processeur 64 bits
#else
void HardwareInfoImpl::Cpuid(UInt32 functionId, UInt32 subFunctionId, UInt32 registers[4])
{
#if defined(NAZARA_COMPILER_CLANG) || defined(NAZARA_COMPILER_GCC) || defined(NAZARA_COMPILER_INTEL)
int supported;
asm volatile (" pushfl\n"
" pop %%eax\n"
" mov %%eax, %%ecx\n"
" xor $0x200000, %%eax\n"
" push %%eax\n"
" popfl\n"
" pushfl\n"
" pop %%eax\n"
" xor %%ecx, %%eax\n"
" mov %%eax, %0\n"
" push %%ecx\n"
" popfl"
: "=m" (supported) // output
: // input
: "eax", "ecx", "memory"); // clobbered register
return supported != 0;
// Source: http://stackoverflow.com/questions/1666093/cpuid-implementations-in-c
asm volatile ("cpuid" // Besoin d'être volatile ?
: "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]) // output
: "a" (functionId), "c" (subFunctionId)); // input
#else
return false;
NazaraInternalError("Cpuid has been called although it is not supported");
#endif
#endif
}
unsigned int HardwareInfoImpl::GetProcessorCount()
{
// Plus simple (et plus portable) que de passer par le CPUID
return sysconf(_SC_NPROCESSORS_CONF);
}
UInt64 HardwareInfoImpl::GetTotalMemory()
{
UInt64 pages = sysconf(_SC_PHYS_PAGES);
UInt64 page_size = sysconf(_SC_PAGE_SIZE);
return pages * page_size;
}
bool HardwareInfoImpl::IsCpuidSupported()
{
#ifdef NAZARA_PLATFORM_x64
return true; // Toujours supporté sur un processeur 64 bits
#else
#if defined(NAZARA_COMPILER_CLANG) || defined(NAZARA_COMPILER_GCC) || defined(NAZARA_COMPILER_INTEL)
int supported;
asm volatile (" pushfl\n"
" pop %%eax\n"
" mov %%eax, %%ecx\n"
" xor $0x200000, %%eax\n"
" push %%eax\n"
" popfl\n"
" pushfl\n"
" pop %%eax\n"
" xor %%ecx, %%eax\n"
" mov %%eax, %0\n"
" push %%ecx\n"
" popfl"
: "=m" (supported) // output
: // input
: "eax", "ecx", "memory"); // clobbered register
return supported != 0;
#else
return false;
#endif
#endif
}
}

View File

@@ -10,13 +10,16 @@
#include <Nazara/Prerequesites.hpp>
#include <unistd.h>
class NzHardwareInfoImpl
namespace Nz
{
public:
static void Cpuid(nzUInt32 functionId, nzUInt32 subFunctionId, nzUInt32 registers[4]);
static unsigned int GetProcessorCount();
static nzUInt64 GetTotalMemory();
static bool IsCpuidSupported();
};
class HardwareInfoImpl
{
public:
static void Cpuid(UInt32 functionId, UInt32 subFunctionId, UInt32 registers[4]);
static unsigned int GetProcessorCount();
static UInt64 GetTotalMemory();
static bool IsCpuidSupported();
};
}
#endif // NAZARA_HARDWAREINFOIMPL_POSIX_HPP

View File

@@ -5,31 +5,34 @@
#include <Nazara/Core/Posix/MutexImpl.hpp>
#include <Nazara/Core/Debug.hpp>
NzMutexImpl::NzMutexImpl()
namespace Nz
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
MutexImpl::MutexImpl()
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&m_handle, &attr);
}
pthread_mutex_init(&m_handle, &attr);
}
NzMutexImpl::~NzMutexImpl()
{
pthread_mutex_destroy(&m_handle);
}
MutexImpl::~MutexImpl()
{
pthread_mutex_destroy(&m_handle);
}
void NzMutexImpl::Lock()
{
pthread_mutex_lock(&m_handle);
}
void MutexImpl::Lock()
{
pthread_mutex_lock(&m_handle);
}
bool NzMutexImpl::TryLock()
{
return pthread_mutex_trylock(&m_handle) == 0;
}
bool MutexImpl::TryLock()
{
return pthread_mutex_trylock(&m_handle) == 0;
}
void NzMutexImpl::Unlock()
{
pthread_mutex_unlock(&m_handle);
void MutexImpl::Unlock()
{
pthread_mutex_unlock(&m_handle);
}
}

View File

@@ -9,20 +9,23 @@
#include <pthread.h>
class NzMutexImpl
namespace Nz
{
friend class NzConditionVariableImpl;
class MutexImpl
{
friend class ConditionVariableImpl;
public:
NzMutexImpl();
~NzMutexImpl();
public:
MutexImpl();
~MutexImpl();
void Lock();
bool TryLock();
void Unlock();
void Lock();
bool TryLock();
void Unlock();
private:
pthread_mutex_t m_handle;
};
private:
pthread_mutex_t m_handle;
};
}
#endif // NAZARA_MUTEXIMPL_HPP

View File

@@ -9,63 +9,66 @@
#include <sys/time.h>
#include <Nazara/Core/Debug.hpp>
NzSemaphoreImpl::NzSemaphoreImpl(unsigned int count)
namespace Nz
{
if(sem_init(&m_semaphore, 0, count) != 0)
NazaraError("Failed to create semaphore: " + NzError::GetLastSystemError());
}
NzSemaphoreImpl::~NzSemaphoreImpl()
{
sem_destroy(&m_semaphore);
}
unsigned int NzSemaphoreImpl::GetCount() const
{
int count=0;
sem_getvalue(const_cast<sem_t*>(&m_semaphore), &count);
return static_cast<unsigned int>(count);
}
void NzSemaphoreImpl::Post()
{
#if NAZARA_CORE_SAFE
if (sem_post(&m_semaphore)==-1)
NazaraError("Failed to release semaphore: " + NzError::GetLastSystemError());
#else
sem_post(&m_semaphore);
#endif
}
void NzSemaphoreImpl::Wait()
{
#if NAZARA_CORE_SAFE
if (sem_wait(&m_semaphore) == -1 )
NazaraError("Failed to wait for semaphore: " + NzError::GetLastSystemError());
#else
sem_wait(&m_semaphore);
#endif
}
bool NzSemaphoreImpl::Wait(nzUInt32 timeout)
{
timeval tv;
gettimeofday(&tv, nullptr);
timespec ti;
ti.tv_nsec = (tv.tv_usec + (timeout % 1000)) * 1000000;
ti.tv_sec = tv.tv_sec + (timeout / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
#if NAZARA_CORE_SAFE
if (sem_timedwait(&m_semaphore, &ti) != 0)
SemaphoreImpl::SemaphoreImpl(unsigned int count)
{
NazaraError("Failed to wait for semaphore: " + NzError::GetLastSystemError());
return false;
if(sem_init(&m_semaphore, 0, count) != 0)
NazaraError("Failed to create semaphore: " + Error::GetLastSystemError());
}
return true;
#else
return sem_timedwait(&m_semaphore, &ti) != 0;
#endif
SemaphoreImpl::~SemaphoreImpl()
{
sem_destroy(&m_semaphore);
}
unsigned int SemaphoreImpl::GetCount() const
{
int count=0;
sem_getvalue(const_cast<sem_t*>(&m_semaphore), &count);
return static_cast<unsigned int>(count);
}
void SemaphoreImpl::Post()
{
#if NAZARA_CORE_SAFE
if (sem_post(&m_semaphore)==-1)
NazaraError("Failed to release semaphore: " + Error::GetLastSystemError());
#else
sem_post(&m_semaphore);
#endif
}
void SemaphoreImpl::Wait()
{
#if NAZARA_CORE_SAFE
if (sem_wait(&m_semaphore) == -1 )
NazaraError("Failed to wait for semaphore: " + Error::GetLastSystemError());
#else
sem_wait(&m_semaphore);
#endif
}
bool SemaphoreImpl::Wait(UInt32 timeout)
{
timeval tv;
gettimeofday(&tv, nullptr);
timespec ti;
ti.tv_nsec = (tv.tv_usec + (timeout % 1000)) * 1000000;
ti.tv_sec = tv.tv_sec + (timeout / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
#if NAZARA_CORE_SAFE
if (sem_timedwait(&m_semaphore, &ti) != 0)
{
NazaraError("Failed to wait for semaphore: " + Error::GetLastSystemError());
return false;
}
return true;
#else
return sem_timedwait(&m_semaphore, &ti) != 0;
#endif
}
}

View File

@@ -10,19 +10,22 @@
#include <Nazara/Prerequesites.hpp>
#include <semaphore.h>
class NzSemaphoreImpl
namespace Nz
{
public:
NzSemaphoreImpl(unsigned int count);
~NzSemaphoreImpl();
class SemaphoreImpl
{
public:
SemaphoreImpl(unsigned int count);
~SemaphoreImpl();
unsigned int GetCount() const;
void Post();
void Wait();
bool Wait(nzUInt32 timeout);
unsigned int GetCount() const;
void Post();
void Wait();
bool Wait(UInt32 timeout);
private:
sem_t m_semaphore;
};
private:
sem_t m_semaphore;
};
}
#endif // NAZARA_SEMAPHOREIMPL_HPP

View File

@@ -7,186 +7,189 @@
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Debug.hpp>
bool NzTaskSchedulerImpl::Initialize(unsigned int workerCount)
namespace Nz
{
if (IsInitialized())
return true; // Déjà initialisé
#if NAZARA_CORE_SAFE
if (workerCount == 0)
bool TaskSchedulerImpl::Initialize(unsigned int workerCount)
{
NazaraError("Invalid worker count ! (0)");
return false;
}
#endif
if (IsInitialized())
return true; // Déjà initialisé
s_workerCount = workerCount;
s_isDone = false;
s_isWaiting = false;
s_shouldFinish = false;
s_threads.reset(new pthread_t[workerCount]);
// On initialise les conditions variables, mutex et barrière.
pthread_cond_init(&s_cvEmpty, nullptr);
pthread_cond_init(&s_cvNotEmpty, nullptr);
pthread_mutex_init(&s_mutexQueue, nullptr);
pthread_barrier_init(&s_barrier, nullptr, workerCount + 1);
for (unsigned int i = 0; i < s_workerCount; ++i)
{
// Le thread va se lancer, attendre que tous se créent et attendre d'être réveillé.
pthread_create(&s_threads[i], nullptr, WorkerProc, nullptr);
}
pthread_barrier_wait(&s_barrier); // On attend que les enfants soient bien créés.
return true;
}
bool NzTaskSchedulerImpl::IsInitialized()
{
return s_workerCount > 0;
}
void NzTaskSchedulerImpl::Run(NzFunctor** tasks, unsigned int count)
{
// On s'assure que des tâches ne sont pas déjà en cours
Wait();
pthread_mutex_lock(&s_mutexQueue);
s_isDone = false;
while (count--)
s_tasks.push(*tasks++);
pthread_cond_signal(&s_cvNotEmpty);
pthread_mutex_unlock(&s_mutexQueue);
}
void NzTaskSchedulerImpl::Uninitialize()
{
#ifdef NAZARA_CORE_SAFE
if (s_workerCount == 0)
{
NazaraError("Task scheduler is not initialized");
return;
}
#endif
// On réveille les threads pour qu'ils sortent de la boucle et terminent.
pthread_mutex_lock(&s_mutexQueue);
// On commence par vider la queue et demander qu'ils s'arrêtent.
std::queue<NzFunctor*> emptyQueue;
std::swap(s_tasks, emptyQueue);
s_shouldFinish = true;
pthread_cond_broadcast(&s_cvNotEmpty);
pthread_mutex_unlock(&s_mutexQueue);
// On attend que chaque thread se termine
for (unsigned int i = 0; i < s_workerCount; ++i)
pthread_join(s_threads[i], nullptr);
// Et on libère les ressources
pthread_barrier_destroy(&s_barrier);
pthread_cond_destroy(&s_cvEmpty);
pthread_cond_destroy(&s_cvNotEmpty);
pthread_mutex_destroy(&s_mutexQueue);
s_workerCount = 0;
}
void NzTaskSchedulerImpl::WaitForTasks()
{
#ifdef NAZARA_CORE_SAFE
if (s_workerCount == 0)
{
NazaraError("Task scheduler is not initialized");
return;
}
#endif
Wait();
}
NzFunctor* NzTaskSchedulerImpl::PopQueue()
{
NzFunctor* task = nullptr;
pthread_mutex_lock(&s_mutexQueue);
if (!s_tasks.empty())
{
task = s_tasks.front();
s_tasks.pop();
}
pthread_mutex_unlock(&s_mutexQueue);
return task;
}
void NzTaskSchedulerImpl::Wait()
{
if (s_isDone)
return;
pthread_mutex_lock(&s_mutexQueue);
s_isWaiting = true;
pthread_cond_broadcast(&s_cvNotEmpty);
pthread_cond_wait(&s_cvEmpty, &s_mutexQueue);
pthread_mutex_unlock(&s_mutexQueue);
s_isDone = true;
}
void* NzTaskSchedulerImpl::WorkerProc(void* /*userdata*/)
{
// On s'assure que tous les threads soient correctement lancés.
pthread_barrier_wait(&s_barrier);
// On quitte s'il doit terminer.
while (!s_shouldFinish)
{
NzFunctor* task = PopQueue();
if (task)
#if NAZARA_CORE_SAFE
if (workerCount == 0)
{
// On exécute la tâche avant de la supprimer
task->Run();
delete task;
NazaraError("Invalid worker count ! (0)");
return false;
}
else
#endif
s_workerCount = workerCount;
s_isDone = false;
s_isWaiting = false;
s_shouldFinish = false;
s_threads.reset(new pthread_t[workerCount]);
// On initialise les conditions variables, mutex et barrière.
pthread_cond_init(&s_cvEmpty, nullptr);
pthread_cond_init(&s_cvNotEmpty, nullptr);
pthread_mutex_init(&s_mutexQueue, nullptr);
pthread_barrier_init(&s_barrier, nullptr, workerCount + 1);
for (unsigned int i = 0; i < s_workerCount; ++i)
{
pthread_mutex_lock(&s_mutexQueue);
if (s_tasks.empty())
s_isDone = true;
// Le thread va se lancer, attendre que tous se créent et attendre d'être réveillé.
pthread_create(&s_threads[i], nullptr, WorkerProc, nullptr);
}
while (!(!s_tasks.empty() || s_isWaiting || s_shouldFinish))
pthread_cond_wait(&s_cvNotEmpty, &s_mutexQueue);
pthread_barrier_wait(&s_barrier); // On attend que les enfants soient bien créés.
if (s_tasks.empty() && s_isWaiting)
return true;
}
bool TaskSchedulerImpl::IsInitialized()
{
return s_workerCount > 0;
}
void TaskSchedulerImpl::Run(Functor** tasks, unsigned int count)
{
// On s'assure que des tâches ne sont pas déjà en cours
Wait();
pthread_mutex_lock(&s_mutexQueue);
s_isDone = false;
while (count--)
s_tasks.push(*tasks++);
pthread_cond_signal(&s_cvNotEmpty);
pthread_mutex_unlock(&s_mutexQueue);
}
void TaskSchedulerImpl::Uninitialize()
{
#ifdef NAZARA_CORE_SAFE
if (s_workerCount == 0)
{
NazaraError("Task scheduler is not initialized");
return;
}
#endif
// On réveille les threads pour qu'ils sortent de la boucle et terminent.
pthread_mutex_lock(&s_mutexQueue);
// On commence par vider la queue et demander qu'ils s'arrêtent.
std::queue<Functor*> emptyQueue;
std::swap(s_tasks, emptyQueue);
s_shouldFinish = true;
pthread_cond_broadcast(&s_cvNotEmpty);
pthread_mutex_unlock(&s_mutexQueue);
// On attend que chaque thread se termine
for (unsigned int i = 0; i < s_workerCount; ++i)
pthread_join(s_threads[i], nullptr);
// Et on libère les ressources
pthread_barrier_destroy(&s_barrier);
pthread_cond_destroy(&s_cvEmpty);
pthread_cond_destroy(&s_cvNotEmpty);
pthread_mutex_destroy(&s_mutexQueue);
s_workerCount = 0;
}
void TaskSchedulerImpl::WaitForTasks()
{
#ifdef NAZARA_CORE_SAFE
if (s_workerCount == 0)
{
NazaraError("Task scheduler is not initialized");
return;
}
#endif
Wait();
}
Functor* TaskSchedulerImpl::PopQueue()
{
Functor* task = nullptr;
pthread_mutex_lock(&s_mutexQueue);
if (!s_tasks.empty())
{
task = s_tasks.front();
s_tasks.pop();
}
pthread_mutex_unlock(&s_mutexQueue);
return task;
}
void TaskSchedulerImpl::Wait()
{
if (s_isDone)
return;
pthread_mutex_lock(&s_mutexQueue);
s_isWaiting = true;
pthread_cond_broadcast(&s_cvNotEmpty);
pthread_cond_wait(&s_cvEmpty, &s_mutexQueue);
pthread_mutex_unlock(&s_mutexQueue);
s_isDone = true;
}
void* TaskSchedulerImpl::WorkerProc(void* /*userdata*/)
{
// On s'assure que tous les threads soient correctement lancés.
pthread_barrier_wait(&s_barrier);
// On quitte s'il doit terminer.
while (!s_shouldFinish)
{
Functor* task = PopQueue();
if (task)
{
// On prévient le thread qui attend que les tâches soient effectuées.
s_isWaiting = false;
pthread_cond_signal(&s_cvEmpty);
// On exécute la tâche avant de la supprimer
task->Run();
delete task;
}
else
{
pthread_mutex_lock(&s_mutexQueue);
if (s_tasks.empty())
s_isDone = true;
pthread_mutex_unlock(&s_mutexQueue);
while (!(!s_tasks.empty() || s_isWaiting || s_shouldFinish))
pthread_cond_wait(&s_cvNotEmpty, &s_mutexQueue);
if (s_tasks.empty() && s_isWaiting)
{
// On prévient le thread qui attend que les tâches soient effectuées.
s_isWaiting = false;
pthread_cond_signal(&s_cvEmpty);
}
pthread_mutex_unlock(&s_mutexQueue);
}
}
return nullptr;
}
return nullptr;
std::queue<Functor*> TaskSchedulerImpl::s_tasks;
std::unique_ptr<pthread_t[]> TaskSchedulerImpl::s_threads;
std::atomic<bool> TaskSchedulerImpl::s_isDone;
std::atomic<bool> TaskSchedulerImpl::s_isWaiting;
std::atomic<bool> TaskSchedulerImpl::s_shouldFinish;
unsigned int TaskSchedulerImpl::s_workerCount;
pthread_mutex_t TaskSchedulerImpl::s_mutexQueue;
pthread_cond_t TaskSchedulerImpl::s_cvEmpty;
pthread_cond_t TaskSchedulerImpl::s_cvNotEmpty;
pthread_barrier_t TaskSchedulerImpl::s_barrier;
}
std::queue<NzFunctor*> NzTaskSchedulerImpl::s_tasks;
std::unique_ptr<pthread_t[]> NzTaskSchedulerImpl::s_threads;
std::atomic<bool> NzTaskSchedulerImpl::s_isDone;
std::atomic<bool> NzTaskSchedulerImpl::s_isWaiting;
std::atomic<bool> NzTaskSchedulerImpl::s_shouldFinish;
unsigned int NzTaskSchedulerImpl::s_workerCount;
pthread_mutex_t NzTaskSchedulerImpl::s_mutexQueue;
pthread_cond_t NzTaskSchedulerImpl::s_cvEmpty;
pthread_cond_t NzTaskSchedulerImpl::s_cvNotEmpty;
pthread_barrier_t NzTaskSchedulerImpl::s_barrier;

View File

@@ -14,34 +14,37 @@
#include <pthread.h>
#include <queue>
class NzTaskSchedulerImpl
namespace Nz
{
public:
NzTaskSchedulerImpl() = delete;
~NzTaskSchedulerImpl() = delete;
class TaskSchedulerImpl
{
public:
TaskSchedulerImpl() = delete;
~TaskSchedulerImpl() = delete;
static bool Initialize(unsigned int workerCount);
static bool IsInitialized();
static void Run(NzFunctor** tasks, unsigned int count);
static void Uninitialize();
static void WaitForTasks();
static bool Initialize(unsigned int workerCount);
static bool IsInitialized();
static void Run(Functor** tasks, unsigned int count);
static void Uninitialize();
static void WaitForTasks();
private:
static NzFunctor* PopQueue();
static void Wait();
static void* WorkerProc(void* userdata);
private:
static Functor* PopQueue();
static void Wait();
static void* WorkerProc(void* userdata);
static std::queue<NzFunctor*> s_tasks;
static std::unique_ptr<pthread_t[]> s_threads;
static std::atomic<bool> s_isDone;
static std::atomic<bool> s_isWaiting;
static std::atomic<bool> s_shouldFinish;
static unsigned int s_workerCount;
static std::queue<Functor*> s_tasks;
static std::unique_ptr<pthread_t[]> s_threads;
static std::atomic<bool> s_isDone;
static std::atomic<bool> s_isWaiting;
static std::atomic<bool> s_shouldFinish;
static unsigned int s_workerCount;
static pthread_mutex_t s_mutexQueue;
static pthread_cond_t s_cvEmpty;
static pthread_cond_t s_cvNotEmpty;
static pthread_barrier_t s_barrier;
};
static pthread_mutex_t s_mutexQueue;
static pthread_cond_t s_cvEmpty;
static pthread_cond_t s_cvNotEmpty;
static pthread_barrier_t s_barrier;
};
}
#endif // NAZARA_TASKSCHEDULERIMPL_HPP

View File

@@ -9,64 +9,67 @@
#include <sys/time.h>
#include <Nazara/Core/Debug.hpp>
NzThreadImpl::NzThreadImpl(NzFunctor* functor)
namespace Nz
{
int error = pthread_create(&m_handle, nullptr, &NzThreadImpl::ThreadProc, functor);
if (error != 0)
NazaraInternalError("Failed to create thread: " + NzError::GetLastSystemError());
}
void NzThreadImpl::Detach()
{
pthread_detach(m_handle);
}
void NzThreadImpl::Join()
{
pthread_join(m_handle, nullptr);
}
void* NzThreadImpl::ThreadProc(void* userdata)
{
NzFunctor* func = static_cast<NzFunctor*>(userdata);
func->Run();
delete func;
return nullptr;
}
void NzThreadImpl::Sleep(nzUInt32 time)
{
// code from SFML2 Unix SleepImpl.cpp source https://github.com/LaurentGomila/SFML/blob/master/src/SFML/System/Unix/SleepImpl.cpp
// usleep is not reliable enough (it might block the
// whole process instead of just the current thread)
// so we must use pthread_cond_timedwait instead
// this implementation is inspired from Qt
// get the current time
timeval tv;
gettimeofday(&tv, nullptr);
// construct the time limit (current time + time to wait)
timespec ti;
ti.tv_nsec = (tv.tv_usec + (time % 1000)) * 1000;
ti.tv_sec = tv.tv_sec + (time / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
// create a mutex and thread condition
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, nullptr);
pthread_cond_t condition;
pthread_cond_init(&condition, nullptr);
// wait...
pthread_mutex_lock(&mutex);
pthread_cond_timedwait(&condition, &mutex, &ti);
pthread_mutex_unlock(&mutex);
// destroy the mutex and condition
pthread_cond_destroy(&condition);
pthread_mutex_destroy(&mutex);
ThreadImpl::ThreadImpl(Functor* functor)
{
int error = pthread_create(&m_handle, nullptr, &ThreadImpl::ThreadProc, functor);
if (error != 0)
NazaraInternalError("Failed to create thread: " + Error::GetLastSystemError());
}
void ThreadImpl::Detach()
{
pthread_detach(m_handle);
}
void ThreadImpl::Join()
{
pthread_join(m_handle, nullptr);
}
void* ThreadImpl::ThreadProc(void* userdata)
{
Functor* func = static_cast<Functor*>(userdata);
func->Run();
delete func;
return nullptr;
}
void ThreadImpl::Sleep(UInt32 time)
{
// code from SFML2 Unix SleepImpl.cpp source https://github.com/LaurentGomila/SFML/blob/master/src/SFML/System/Unix/SleepImpl.cpp
// usleep is not reliable enough (it might block the
// whole process instead of just the current thread)
// so we must use pthread_cond_timedwait instead
// this implementation is inspired from Qt
// get the current time
timeval tv;
gettimeofday(&tv, nullptr);
// construct the time limit (current time + time to wait)
timespec ti;
ti.tv_nsec = (tv.tv_usec + (time % 1000)) * 1000;
ti.tv_sec = tv.tv_sec + (time / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;
// create a mutex and thread condition
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, nullptr);
pthread_cond_t condition;
pthread_cond_init(&condition, nullptr);
// wait...
pthread_mutex_lock(&mutex);
pthread_cond_timedwait(&condition, &mutex, &ti);
pthread_mutex_unlock(&mutex);
// destroy the mutex and condition
pthread_cond_destroy(&condition);
pthread_mutex_destroy(&mutex);
}
}

View File

@@ -10,22 +10,25 @@
#include <Nazara/Prerequesites.hpp>
#include <pthread.h>
struct NzFunctor;
class NzThreadImpl
namespace Nz
{
public:
NzThreadImpl(NzFunctor* threadFunc);
struct Functor;
void Detach();
void Join();
class ThreadImpl
{
public:
ThreadImpl(Functor* threadFunc);
static void Sleep(nzUInt32 time);
void Detach();
void Join();
private:
static void* ThreadProc(void* userdata);
static void Sleep(UInt32 time);
pthread_t m_handle;
};
private:
static void* ThreadProc(void* userdata);
pthread_t m_handle;
};
}
#endif // NAZARA_THREADIMPL_HPP