Renamed Degrees|Radians functions to From[Degrees|Radians]

Also added To[Degrees|Radians] functions


Former-commit-id: b7445a42e5ee88319009db9d664d8d9f8fe88c18
This commit is contained in:
Lynix 2014-09-06 11:52:37 +02:00
parent 023e41512f
commit 68bd3304c6
5 changed files with 45 additions and 23 deletions

View File

@ -22,7 +22,8 @@
template<typename T> T NzApproach(T value, T objective, T increment); template<typename T> T NzApproach(T value, T objective, T increment);
template<typename T> constexpr T NzClamp(T value, T min, T max); template<typename T> constexpr T NzClamp(T value, T min, T max);
template<typename T> constexpr T NzDegrees(T degrees); template<typename T> constexpr T NzFromDegrees(T degrees);
template<typename T> constexpr T NzFromRadians(T radians);
template<typename T> constexpr T NzDegreeToRadian(T degrees); template<typename T> constexpr T NzDegreeToRadian(T degrees);
unsigned int NzGetNearestPowerOfTwo(unsigned int number); unsigned int NzGetNearestPowerOfTwo(unsigned int number);
unsigned int NzGetNumberLength(signed char number); unsigned int NzGetNumberLength(signed char number);
@ -40,9 +41,10 @@ template<typename T> T NzMultiplyAdd(T x, T y, T z);
template<typename T> T NzNormalizeAngle(T angle); template<typename T> T NzNormalizeAngle(T angle);
template<typename T> bool NzNumberEquals(T a, T b, T maxDifference = std::numeric_limits<T>::epsilon()); template<typename T> bool NzNumberEquals(T a, T b, T maxDifference = std::numeric_limits<T>::epsilon());
NzString NzNumberToString(long long number, nzUInt8 radix = 10); NzString NzNumberToString(long long number, nzUInt8 radix = 10);
template<typename T> T NzRadians(T radians);
template<typename T> T NzRadianToDegree(T radians); template<typename T> T NzRadianToDegree(T radians);
long long NzStringToNumber(NzString str, nzUInt8 radix = 10, bool* ok = nullptr); long long NzStringToNumber(NzString str, nzUInt8 radix = 10, bool* ok = nullptr);
template<typename T> constexpr T NzToDegrees(T angle);
template<typename T> constexpr T NzToRadians(T angle);
#include <Nazara/Math/Algorithm.inl> #include <Nazara/Math/Algorithm.inl>

View File

@ -31,7 +31,13 @@ constexpr T NzClamp(T value, T min, T max)
} }
template<typename T> template<typename T>
constexpr T NzDegrees(T degrees) constexpr T NzDegreeToRadian(T degrees)
{
return degrees * F(M_PI/180.0);
}
template<typename T>
constexpr T NzFromDegrees(T degrees)
{ {
#if NAZARA_MATH_ANGLE_RADIAN #if NAZARA_MATH_ANGLE_RADIAN
return NzDegreeToRadian(degrees); return NzDegreeToRadian(degrees);
@ -41,9 +47,13 @@ constexpr T NzDegrees(T degrees)
} }
template<typename T> template<typename T>
constexpr T NzDegreeToRadian(T degrees) constexpr T NzFromRadians(T radians)
{ {
return degrees * F(M_PI/180.0); #if NAZARA_MATH_ANGLE_RADIAN
return radians;
#else
return NzRadianToDegree(radians);
#endif
} }
inline unsigned int NzGetNearestPowerOfTwo(unsigned int number) inline unsigned int NzGetNearestPowerOfTwo(unsigned int number)
@ -51,7 +61,7 @@ inline unsigned int NzGetNearestPowerOfTwo(unsigned int number)
///TODO: Marquer comme constexpr en C++14 ///TODO: Marquer comme constexpr en C++14
unsigned int x = 1; unsigned int x = 1;
// Tant que x est plus petit que n, on décale ses bits vers la gauche, ce qui revient à multiplier par deux // Tant que x est plus petit que n, on décale ses bits vers la gauche, ce qui revient à multiplier par deux
while(x <= number) while (x <= number)
x <<= 1; x <<= 1;
return x; return x;
@ -268,16 +278,6 @@ inline NzString NzNumberToString(long long number, nzUInt8 radix)
return str.Reversed(); return str.Reversed();
} }
template<typename T>
T NzRadians(T radians)
{
#if NAZARA_MATH_ANGLE_RADIAN
return radians;
#else
return NzRadianToDegree(radians);
#endif
}
template<typename T> template<typename T>
T NzRadianToDegree(T radians) T NzRadianToDegree(T radians)
{ {
@ -333,6 +333,26 @@ inline long long NzStringToNumber(NzString str, nzUInt8 radix, bool* ok)
return (negative) ? -static_cast<long long>(total) : total; return (negative) ? -static_cast<long long>(total) : total;
} }
template<typename T>
constexpr T NzToDegrees(T angle)
{
#if NAZARA_MATH_ANGLE_RADIAN
return NzRadianToDegree(angle);
#else
return angle;
#endif
}
template<typename T>
constexpr T NzToRadians(T angle)
{
#if NAZARA_MATH_ANGLE_RADIAN
return angle;
#else
return NzDegreeToRadian(angle);
#endif
}
#undef F2 #undef F2
#undef F #undef F

View File

@ -265,14 +265,14 @@ NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
T test = x*y + z*w; T test = x*y + z*w;
if (test > F(0.499)) if (test > F(0.499))
// singularity at north pole // singularity at north pole
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0)); return NzEulerAngles<T>(NzFromDegrees(F(90.0)), NzFromRadians(F(2.0) * std::atan2(x, w)), F(0.0));
if (test < F(-0.499)) if (test < F(-0.499))
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0)); return NzEulerAngles<T>(NzFromDegrees(F(-90.0)), NzFromRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*x* - F(2.0)*z*z)), return NzEulerAngles<T>(NzFromRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*x* - F(2.0)*z*z)),
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*y*y - F(2.0)*z*z)), NzFromRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*y*y - F(2.0)*z*z)),
NzRadians(std::asin(F(2.0)*test))); NzFromRadians(std::asin(F(2.0)*test)));
} }
template<typename T> template<typename T>

View File

@ -57,7 +57,7 @@ inline unsigned int NzVector2<unsigned int>::AbsDotProduct(const NzVector2<unsig
template<typename T> template<typename T>
T NzVector2<T>::AngleBetween(const NzVector2& vec) const T NzVector2<T>::AngleBetween(const NzVector2& vec) const
{ {
return NzRadians(std::atan2(vec.y, vec.x) - std::atan2(y, x)); return NzFromRadians(std::atan2(vec.y, vec.x) - std::atan2(y, x));
} }
template<typename T> template<typename T>

View File

@ -77,7 +77,7 @@ T NzVector3<T>::AngleBetween(const NzVector3& vec) const
#endif #endif
T alpha = DotProduct(vec)/divisor; T alpha = DotProduct(vec)/divisor;
return NzRadians(std::acos(NzClamp(alpha, F(-1.0), F(1.0)))); return NzFromRadians(std::acos(NzClamp(alpha, F(-1.0), F(1.0))));
} }
template<typename T> template<typename T>