Merge branch 'master' into vulkan

Former-commit-id: 875dd773cefa6dde4744443851378e33bfab0ab8
This commit is contained in:
Lynix
2016-05-14 13:58:06 +02:00
107 changed files with 3433 additions and 1558 deletions

View File

@@ -454,24 +454,24 @@ namespace Nz
return true;
}
/*!
* \brief Sets the size of the file
* \return true if the file size has correctly changed
*
* \param size The size the file should have after this call
*
* \remark The cursor position is not affected by this call
* \remark The file must be open in write mode
*/
bool File::SetSize(UInt64 size)
{
NazaraLock(m_mutex)
/*!
* \brief Sets the size of the file
* \return true if the file size has correctly changed
*
* \param size The size the file should have after this call
*
* \remark The cursor position is not affected by this call
* \remark The file must be open in write mode
*/
bool File::SetSize(UInt64 size)
{
NazaraLock(m_mutex)
NazaraAssert(IsOpen(), "File is not open");
NazaraAssert(IsWritable(), "File is not writable");
NazaraAssert(IsOpen(), "File is not open");
NazaraAssert(IsWritable(), "File is not writable");
return m_impl->SetSize(size);
}
return m_impl->SetSize(size);
}
/*!
* \brief Sets the file path

View File

@@ -22,7 +22,6 @@ namespace Nz
/*!
* \brief Constructs a ParameterList object by copy
*/
ParameterList::ParameterList(const ParameterList& list)
{
operator=(list);
@@ -31,16 +30,14 @@ namespace Nz
/*!
* \brief Destructs the object and clears
*/
ParameterList::~ParameterList()
{
Clear();
}
/*!
* \brief Clears the list of parameters
* \brief Clears all the parameters
*/
void ParameterList::Clear()
{
for (auto it = m_parameters.begin(); it != m_parameters.end(); ++it)
@@ -50,17 +47,18 @@ namespace Nz
}
/*!
* \brief Gets a boolean parameter by name
* \return true if success
* \brief Gets a parameter as a boolean
* \return true if the parameter could be represented as a boolean
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to a boolean to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a boolean, a conversion will be performed, compatibles types are:
Integer: 0 is interpreted as false, any other value is interpreted as true
String: Conversion obeys the rule as described by String::ToBool
*/
bool ParameterList::GetBooleanParameter(const String& name, bool* value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -85,17 +83,17 @@ namespace Nz
return true;
case ParameterType_String:
{
bool converted;
if (it->second.value.stringVal.ToBool(&converted, String::CaseInsensitive))
{
bool converted;
if (it->second.value.stringVal.ToBool(&converted, String::CaseInsensitive))
{
*value = converted;
return true;
}
break;
*value = converted;
return true;
}
break;
}
case ParameterType_Float:
case ParameterType_None:
case ParameterType_Pointer:
@@ -108,17 +106,62 @@ namespace Nz
}
/*!
* \brief Gets a float parameter by name
* \return true if success
* \brief Gets a parameter as a color
* \return true if the parameter could be represented as a color
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to a color to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a color, the function fails
*/
bool ParameterList::GetColorParameter(const String& name, Color* value) const
{
NazaraAssert(value, "Invalid pointer");
ErrorFlags flags(ErrorFlag_Silent | ErrorFlag_ThrowExceptionDisabled);
auto it = m_parameters.find(name);
if (it == m_parameters.end())
{
NazaraError("Parameter \"" + name + "\" is not present");
return false;
}
switch (it->second.type)
{
case ParameterType_Color:
*value = it->second.value.colorVal;
return true;
case ParameterType_Boolean:
case ParameterType_Integer:
case ParameterType_String:
case ParameterType_Float:
case ParameterType_None:
case ParameterType_Pointer:
case ParameterType_Userdata:
break;
}
NazaraError("Parameter value is not representable as a color");
return false;
}
/*!
* \brief Gets a parameter as a float
* \return true if the parameter could be represented as a float
*
* \param name Name of the parameter
* \param value Pointer to a float to hold the retrieved value
*
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a float, a conversion will be performed, compatibles types are:
Integer: The integer value is converted to its float representation
String: Conversion obeys the rule as described by String::ToDouble
*/
bool ParameterList::GetFloatParameter(const String& name, float* value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -164,19 +207,21 @@ namespace Nz
NazaraError("Parameter value is not representable as a float");
return false;
}
/*!
* \brief Gets a integer parameter by name
* \return true if success
* \brief Gets a parameter as an integer
* \return true if the parameter could be represented as an integer
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to an integer to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a float, a conversion will be performed, compatibles types are:
Boolean: The boolean is represented as 1 if true and 0 if false
Float: The floating-point value is truncated and converted to a integer
String: Conversion obeys the rule as described by String::ToInteger but fails if the value could not be represented as a int
*/
bool ParameterList::GetIntegerParameter(const String& name, int* value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -229,15 +274,14 @@ namespace Nz
}
/*!
* \brief Gets a parameter type by name
* \return true if the parameter is present
* \brief Gets a parameter type
* \return true if the parameter is present, its type being written to type
*
* \param name Name of the variable
* \param type Pointer to a variable to hold result
* \param type Pointer to a variable to hold the result
*
* \remark Produces a NazaraAssert if type is invalid
* \remark type must be a valid pointer to a ParameterType variable
*/
bool ParameterList::GetParameterType(const String& name, ParameterType* type) const
{
NazaraAssert(type, "Invalid pointer");
@@ -252,17 +296,17 @@ namespace Nz
}
/*!
* \brief Gets a pointer parameter by name
* \return true if success
* \brief Gets a parameter as a pointer
* \return true if the parameter could be represented as a pointer
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to a pointer to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a pointer, a conversion will be performed, compatibles types are:
Userdata: The pointer part of the userdata is returned
*/
bool ParameterList::GetPointerParameter(const String& name, void** value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -299,17 +343,23 @@ namespace Nz
}
/*!
* \brief Gets a string parameter by name
* \return true if success
* \brief Gets a parameter as a string
* \return true if the parameter could be represented as a string
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to a pointer to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not a string, a conversion will be performed, all types are compatibles:
Boolean: Conversion obeys the rules of String::Boolean
Color: Conversion obeys the rules of Color::ToString
Float: Conversion obeys the rules of String::Number
Integer: Conversion obeys the rules of String::Number
None: An empty string is returned
Pointer: Conversion obeys the rules of String::Pointer
Userdata: Conversion obeys the rules of String::Pointer
*/
bool ParameterList::GetStringParameter(const String& name, String* value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -329,6 +379,10 @@ namespace Nz
*value = String::Boolean(it->second.value.boolVal);
return true;
case ParameterType_Color:
*value = it->second.value.colorVal.ToString();
return true;
case ParameterType_Float:
*value = String::Number(it->second.value.floatVal);
return true;
@@ -357,19 +411,20 @@ namespace Nz
NazaraInternalError("Parameter value is not valid");
return false;
}
/*!
* \brief Gets a user parameter by name
* \return true if success
* \brief Gets a parameter as an userdata
* \return true if the parameter could be represented as a userdata
*
* \param name Name of the variable
* \param value Value to set
* \param name Name of the parameter
* \param value Pointer to a pointer to hold the retrieved value
*
* \remark Produces a NazaraAssert if pointer is invalid
* \remark Produces a silent NazaraError if name is not a variable
* \remark Produces a silent NazaraError if value could not be convertible
* \remark value must be a valid pointer
* \remark In case of failure, the variable pointed by value keep its value
* \remark If the parameter is not an userdata, the function fails
*
* \see GetPointerParameter
*/
bool ParameterList::GetUserdataParameter(const String& name, void** value) const
{
NazaraAssert(value, "Invalid pointer");
@@ -396,25 +451,24 @@ namespace Nz
}
/*!
* \brief Checks whether the parameter list has a parameter with that name
* \brief Checks whether the parameter list contains a parameter named `name`
* \return true if found
*
* \param name Name of the parameter
*/
bool ParameterList::HasParameter(const String& name) const
{
return m_parameters.find(name) != m_parameters.end();
}
/*!
* \brief Removes the parameter with that name
* \brief Removes the parameter named `name`
*
* Removes the parameter with that name, if not found, nothing is done
* Search for a parameter named `name` and remove it from the parameter list, freeing up its memory
* Nothing is done if the parameter is not present in the parameter list
*
* \param name Name of the parameter
*/
void ParameterList::RemoveParameter(const String& name)
{
auto it = m_parameters.find(name);
@@ -426,11 +480,12 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to ParameterType_None
* \brief Sets a null parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
*/
void ParameterList::SetParameter(const String& name)
{
Parameter& parameter = CreateValue(name);
@@ -438,12 +493,29 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to the value
* \brief Sets a color parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param value The color value
*/
void ParameterList::SetParameter(const String& name, const Color& value)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Color;
PlacementNew(&parameter.value.colorVal, value);
}
/*!
* \brief Sets a string parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value The string value
*/
void ParameterList::SetParameter(const String& name, const String& value)
{
Parameter& parameter = CreateValue(name);
@@ -453,12 +525,13 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to the value
* \brief Sets a string parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param value The string value
*/
void ParameterList::SetParameter(const String& name, const char* value)
{
Parameter& parameter = CreateValue(name);
@@ -468,41 +541,13 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to the value
* \brief Sets a boolean parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param value The boolean value
*/
void ParameterList::SetParameter(const String& name, void* value)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Pointer;
parameter.value.ptrVal = value;
}
/*!
* \brief Sets the parameter with the name to the value
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param destructor Destructor for dynamic variable
*/
void ParameterList::SetParameter(const String& name, void* value, Destructor destructor)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Userdata;
parameter.value.userdataVal = new Parameter::UserdataValue(destructor, value);
}
/*!
* \brief Sets the parameter with the name to the value
*
* \param name Name of the parameter
* \param value Value of the parameter
*/
void ParameterList::SetParameter(const String& name, bool value)
{
Parameter& parameter = CreateValue(name);
@@ -511,12 +556,13 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to the value
* \brief Sets a float parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param value The float value
*/
void ParameterList::SetParameter(const String& name, float value)
{
Parameter& parameter = CreateValue(name);
@@ -525,26 +571,63 @@ namespace Nz
}
/*!
* \brief Sets the parameter with the name to the value
* \brief Sets an integer parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value Value of the parameter
* \param value The integer value
*/
void ParameterList::SetParameter(const String& name, int value)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Integer;
parameter.value.intVal = value;
}
/*!
* \brief Sets a pointer parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value The pointer value
*
* \remark This sets a raw pointer, this class takes no responsibility toward it,
if you wish to destroy the pointed variable along with the parameter list, you should set a userdata
*/
void ParameterList::SetParameter(const String& name, void* value)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Pointer;
parameter.value.ptrVal = value;
}
/*!
* \brief Assigns the content of the other parameter list to this
* \brief Sets a userdata parameter named `name`
*
* If a parameter already exists with that name, it is destroyed and replaced by this call
*
* \param name Name of the parameter
* \param value The pointer value
* \param destructor The destructor function to be called upon parameter suppression
*
* \remark The destructor is called once when all copies of the userdata are destroyed, which means
you can safely copy the parameter list around.
*/
void ParameterList::SetParameter(const String& name, void* value, Destructor destructor)
{
Parameter& parameter = CreateValue(name);
parameter.type = ParameterType_Userdata;
parameter.value.userdataVal = new Parameter::UserdataValue(destructor, value);
}
/*!
* \brief Copies the content of the other parameter list to this
* \return A reference to this
*
* \param list List to assign
*/
ParameterList& ParameterList::operator=(const ParameterList& list)
{
Clear();
@@ -627,6 +710,7 @@ namespace Nz
}
case ParameterType_Boolean:
case ParameterType_Color:
case ParameterType_Float:
case ParameterType_Integer:
case ParameterType_None:

View File

@@ -118,6 +118,11 @@ namespace Nz
return lseek64(m_fileDescriptor, offset, moveMethod) != -1;
}
bool FileImpl::SetSize(UInt64 size)
{
return ftruncate64(m_fileDescriptor, size) != 0;
}
std::size_t FileImpl::Write(const void* buffer, std::size_t size)
{
lockf64(m_fileDescriptor, F_LOCK, size);

View File

@@ -39,6 +39,7 @@ namespace Nz
bool Open(const String& filePath, UInt32 mode);
std::size_t Read(void* buffer, std::size_t size);
bool SetCursorPos(CursorPosition pos, Int64 offset);
bool SetSize(UInt64 size);
std::size_t Write(const void* buffer, std::size_t size);
FileImpl& operator=(const FileImpl&) = delete;

View File

@@ -0,0 +1,35 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Core module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/SerializationContext.hpp>
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Debug.hpp>
namespace Nz
{
/*!
* \ingroup core
* \class Nz::SerializationContext
* \brief Structure containing a serialization/unserialization context states
*/
/*!
* Write bits to the stream (if any) and reset the current bit cursor
* \see ResetBitPosition
*/
void SerializationContext::FlushBits()
{
if (currentBitPos != 8)
{
ResetBitPosition();
// Serialize will reset the bit position
if (!Serialize<UInt8>(*this, currentByte))
NazaraWarning("Failed to flush bits");
}
}
}

View File

@@ -4240,7 +4240,7 @@ namespace Nz
utf8::unchecked::iterator<const char*> it(m_sharedString->string.get());
do
{
if ((Unicode::GetCategory(*it) & Unicode::Category_Separator) == 0)
if (*it != '\t' && (Unicode::GetCategory(*it) & Unicode::Category_Separator) == 0)
break;
}
while (*++it);
@@ -4255,7 +4255,7 @@ namespace Nz
utf8::unchecked::iterator<const char*> it(&m_sharedString->string[m_sharedString->size]);
while ((it--).base() != m_sharedString->string.get())
{
if ((Unicode::GetCategory(*it) & Unicode::Category_Separator) == 0)
if (*it != '\t' && (Unicode::GetCategory(*it) & Unicode::Category_Separator) == 0)
break;
}
@@ -4271,7 +4271,8 @@ namespace Nz
{
for (; startPos < m_sharedString->size; ++startPos)
{
if ((Unicode::GetCategory(m_sharedString->string[startPos]) & Unicode::Category_Separator) == 0)
char c = m_sharedString->string[startPos];
if (c != '\t' && (Unicode::GetCategory(c) & Unicode::Category_Separator) == 0)
break;
}
}
@@ -4281,7 +4282,8 @@ namespace Nz
{
for (; endPos > 0; --endPos)
{
if ((Unicode::GetCategory(m_sharedString->string[endPos]) & Unicode::Category_Separator) == 0)
char c = m_sharedString->string[endPos];
if (c != '\t' && (Unicode::GetCategory(c) & Unicode::Category_Separator) == 0)
break;
}
}

View File

@@ -0,0 +1,217 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/DepthRenderQueue.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Debug.hpp>
namespace Nz
{
DepthRenderQueue::DepthRenderQueue()
{
// Material
m_baseMaterial = Material::New();
m_baseMaterial->Enable(RendererParameter_ColorWrite, false);
m_baseMaterial->Enable(RendererParameter_FaceCulling, false);
//m_baseMaterial->SetFaceCulling(FaceSide_Front);
}
void DepthRenderQueue::AddBillboard(int renderOrder, const Material* material, const Vector3f& position, const Vector2f& size, const Vector2f& sinCos, const Color& color)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboard(0, material, position, size, sinCos, color);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const Vector2f> sizePtr, SparsePtr<const Vector2f> sinCosPtr, SparsePtr<const Color> colorPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, sinCosPtr, colorPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const Vector2f> sizePtr, SparsePtr<const Vector2f> sinCosPtr, SparsePtr<const float> alphaPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, sinCosPtr, alphaPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const Vector2f> sizePtr, SparsePtr<const float> anglePtr, SparsePtr<const Color> colorPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, anglePtr, colorPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const Vector2f> sizePtr, SparsePtr<const float> anglePtr, SparsePtr<const float> alphaPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, anglePtr, alphaPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const float> sizePtr, SparsePtr<const Vector2f> sinCosPtr, SparsePtr<const Color> colorPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, sinCosPtr, colorPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const float> sizePtr, SparsePtr<const Vector2f> sinCosPtr, SparsePtr<const float> alphaPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, sinCosPtr, alphaPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const float> sizePtr, SparsePtr<const float> anglePtr, SparsePtr<const Color> colorPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, anglePtr, colorPtr);
}
void DepthRenderQueue::AddBillboards(int renderOrder, const Material* material, unsigned int count, SparsePtr<const Vector3f> positionPtr, SparsePtr<const float> sizePtr, SparsePtr<const float> anglePtr, SparsePtr<const float> alphaPtr)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddBillboards(0, material, count, positionPtr, sizePtr, anglePtr, alphaPtr);
}
void DepthRenderQueue::AddDirectionalLight(const DirectionalLight& light)
{
NazaraAssert(false, "Depth render queue doesn't handle lights");
NazaraUnused(light);
}
void DepthRenderQueue::AddMesh(int renderOrder, const Material* material, const MeshData& meshData, const Boxf& meshAABB, const Matrix4f& transformMatrix)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
NazaraUnused(meshAABB);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddMesh(0, material, meshData, meshAABB, transformMatrix);
}
void DepthRenderQueue::AddPointLight(const PointLight& light)
{
NazaraAssert(false, "Depth render queue doesn't handle lights");
NazaraUnused(light);
}
void DepthRenderQueue::AddSpotLight(const SpotLight& light)
{
NazaraAssert(false, "Depth render queue doesn't handle lights");
NazaraUnused(light);
}
void DepthRenderQueue::AddSprites(int renderOrder, const Material* material, const VertexStruct_XYZ_Color_UV* vertices, unsigned int spriteCount, const Texture* overlay)
{
NazaraAssert(material, "Invalid material");
NazaraUnused(renderOrder);
NazaraUnused(overlay);
if (!IsMaterialSuitable(material))
return;
if (material->HasDepthMaterial())
material = material->GetDepthMaterial();
else
material = m_baseMaterial;
ForwardRenderQueue::AddSprites(0, material, vertices, spriteCount, overlay);
}
}

View File

@@ -0,0 +1,539 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/DepthRenderTechnique.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Core/OffsetOf.hpp>
#include <Nazara/Graphics/AbstractBackground.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/Drawable.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/VertexStruct.hpp>
#include <limits>
#include <memory>
#include <Nazara/Graphics/Debug.hpp>
namespace Nz
{
namespace
{
struct BillboardPoint
{
Color color;
Vector3f position;
Vector2f size;
Vector2f sinCos; // must follow `size` (both will be sent as a Vector4f)
Vector2f uv;
};
unsigned int s_maxQuads = std::numeric_limits<UInt16>::max() / 6;
unsigned int s_vertexBufferSize = 4 * 1024 * 1024; // 4 MiB
}
DepthRenderTechnique::DepthRenderTechnique() :
m_vertexBuffer(BufferType_Vertex)
{
ErrorFlags flags(ErrorFlag_ThrowException, true);
m_vertexBuffer.Create(s_vertexBufferSize, DataStorage_Hardware, BufferUsage_Dynamic);
m_billboardPointBuffer.Reset(&s_billboardVertexDeclaration, &m_vertexBuffer);
m_spriteBuffer.Reset(VertexDeclaration::Get(VertexLayout_XYZ_Color_UV), &m_vertexBuffer);
}
void DepthRenderTechnique::Clear(const SceneData& sceneData) const
{
Renderer::Enable(RendererParameter_DepthBuffer, true);
Renderer::Enable(RendererParameter_DepthWrite, true);
Renderer::Clear(RendererBuffer_Depth);
// Just in case the background does render depth
//if (sceneData.background)
// sceneData.background->Draw(sceneData.viewer);
}
bool DepthRenderTechnique::Draw(const SceneData& sceneData) const
{
for (auto& pair : m_renderQueue.layers)
{
ForwardRenderQueue::Layer& layer = pair.second;
if (!layer.opaqueModels.empty())
DrawOpaqueModels(sceneData, layer);
if (!layer.basicSprites.empty())
DrawBasicSprites(sceneData, layer);
if (!layer.billboards.empty())
DrawBillboards(sceneData, layer);
for (const Drawable* drawable : layer.otherDrawables)
drawable->Draw();
}
return true;
}
AbstractRenderQueue* DepthRenderTechnique::GetRenderQueue()
{
return &m_renderQueue;
}
RenderTechniqueType DepthRenderTechnique::GetType() const
{
return RenderTechniqueType_Depth;
}
bool DepthRenderTechnique::Initialize()
{
try
{
ErrorFlags flags(ErrorFlag_ThrowException, true);
s_quadIndexBuffer.Reset(false, s_maxQuads * 6, DataStorage_Hardware, BufferUsage_Static);
BufferMapper<IndexBuffer> mapper(s_quadIndexBuffer, BufferAccess_WriteOnly);
UInt16* indices = static_cast<UInt16*>(mapper.GetPointer());
for (unsigned int i = 0; i < s_maxQuads; ++i)
{
*indices++ = i * 4 + 0;
*indices++ = i * 4 + 2;
*indices++ = i * 4 + 1;
*indices++ = i * 4 + 2;
*indices++ = i * 4 + 3;
*indices++ = i * 4 + 1;
}
mapper.Unmap(); // Inutile de garder le buffer ouvert plus longtemps
// Quad buffer (utilisé pour l'instancing de billboard et de sprites)
//Note: Les UV sont calculés dans le shader
s_quadVertexBuffer.Reset(VertexDeclaration::Get(VertexLayout_XY), 4, DataStorage_Hardware, BufferUsage_Static);
float vertices[2 * 4] = {
-0.5f, -0.5f,
0.5f, -0.5f,
-0.5f, 0.5f,
0.5f, 0.5f,
};
s_quadVertexBuffer.FillRaw(vertices, 0, sizeof(vertices));
// Déclaration lors du rendu des billboards par sommet
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Color, ComponentType_Color, NazaraOffsetOf(BillboardPoint, color));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Position, ComponentType_Float3, NazaraOffsetOf(BillboardPoint, position));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_TexCoord, ComponentType_Float2, NazaraOffsetOf(BillboardPoint, uv));
s_billboardVertexDeclaration.EnableComponent(VertexComponent_Userdata0, ComponentType_Float4, NazaraOffsetOf(BillboardPoint, size)); // Englobe sincos
// Declaration utilisée lors du rendu des billboards par instancing
// L'avantage ici est la copie directe (std::memcpy) des données de la RenderQueue vers le buffer GPU
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData0, ComponentType_Float3, NazaraOffsetOf(ForwardRenderQueue::BillboardData, center));
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData1, ComponentType_Float4, NazaraOffsetOf(ForwardRenderQueue::BillboardData, size)); // Englobe sincos
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData2, ComponentType_Color, NazaraOffsetOf(ForwardRenderQueue::BillboardData, color));
}
catch (const std::exception& e)
{
NazaraError("Failed to initialise: " + String(e.what()));
return false;
}
return true;
}
void DepthRenderTechnique::Uninitialize()
{
s_quadIndexBuffer.Reset();
s_quadVertexBuffer.Reset();
}
void DepthRenderTechnique::DrawBasicSprites(const SceneData& sceneData, ForwardRenderQueue::Layer& layer) const
{
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
Renderer::SetIndexBuffer(&s_quadIndexBuffer);
Renderer::SetMatrix(MatrixType_World, Matrix4f::Identity());
Renderer::SetVertexBuffer(&m_spriteBuffer);
for (auto& matIt : layer.basicSprites)
{
const Material* material = matIt.first;
auto& matEntry = matIt.second;
if (matEntry.enabled)
{
auto& overlayMap = matEntry.overlayMap;
for (auto& overlayIt : overlayMap)
{
const Texture* overlay = overlayIt.first;
auto& spriteChainVector = overlayIt.second.spriteChains;
unsigned int spriteChainCount = spriteChainVector.size();
if (spriteChainCount > 0)
{
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
UInt32 flags = 0;
if (overlay)
flags |= ShaderFlags_TextureOverlay;
UInt8 overlayUnit;
const Shader* shader = material->Apply(flags, 0, &overlayUnit);
if (overlay)
{
overlayUnit++;
Renderer::SetTexture(overlayUnit, overlay);
Renderer::SetTextureSampler(overlayUnit, material->GetDiffuseSampler());
}
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
{
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
// Overlay
shader->SendInteger(shaderUniforms->textureOverlay, overlayUnit);
// Position de la caméra
shader->SendVector(shaderUniforms->eyePosition, Renderer::GetMatrix(MatrixType_ViewProj).GetTranslation());
lastShader = shader;
}
unsigned int spriteChain = 0; // Quelle chaîne de sprite traitons-nous
unsigned int spriteChainOffset = 0; // À quel offset dans la dernière chaîne nous sommes-nous arrêtés
do
{
// On ouvre le buffer en écriture
BufferMapper<VertexBuffer> vertexMapper(m_spriteBuffer, BufferAccess_DiscardAndWrite);
VertexStruct_XYZ_Color_UV* vertices = reinterpret_cast<VertexStruct_XYZ_Color_UV*>(vertexMapper.GetPointer());
unsigned int spriteCount = 0;
unsigned int maxSpriteCount = std::min(s_maxQuads, m_spriteBuffer.GetVertexCount()/4);
do
{
ForwardRenderQueue::SpriteChain_XYZ_Color_UV& currentChain = spriteChainVector[spriteChain];
unsigned int count = std::min(maxSpriteCount - spriteCount, currentChain.spriteCount - spriteChainOffset);
std::memcpy(vertices, currentChain.vertices + spriteChainOffset*4, 4*count*sizeof(VertexStruct_XYZ_Color_UV));
vertices += count*4;
spriteCount += count;
spriteChainOffset += count;
// Avons-nous traité la chaîne entière ?
if (spriteChainOffset == currentChain.spriteCount)
{
spriteChain++;
spriteChainOffset = 0;
}
}
while (spriteCount < maxSpriteCount && spriteChain < spriteChainCount);
vertexMapper.Unmap();
Renderer::DrawIndexedPrimitives(PrimitiveMode_TriangleList, 0, spriteCount*6);
}
while (spriteChain < spriteChainCount);
spriteChainVector.clear();
}
}
// On remet à zéro
matEntry.enabled = false;
}
}
}
void DepthRenderTechnique::DrawBillboards(const SceneData& sceneData, ForwardRenderQueue::Layer& layer) const
{
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
if (Renderer::HasCapability(RendererCap_Instancing))
{
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(&s_billboardInstanceDeclaration);
Renderer::SetVertexBuffer(&s_quadVertexBuffer);
for (auto& matIt : layer.billboards)
{
const Material* material = matIt.first;
auto& entry = matIt.second;
auto& billboardVector = entry.billboards;
unsigned int billboardCount = billboardVector.size();
if (billboardCount > 0)
{
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
const Shader* shader = material->Apply(ShaderFlags_Billboard | ShaderFlags_Instancing | ShaderFlags_VertexColor);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
{
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
// Position de la caméra
shader->SendVector(shaderUniforms->eyePosition, Renderer::GetMatrix(MatrixType_ViewProj).GetTranslation());
lastShader = shader;
}
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = instanceBuffer->GetVertexCount();
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
instanceBuffer->Fill(data, 0, renderedBillboardCount, true);
data += renderedBillboardCount;
Renderer::DrawPrimitivesInstanced(renderedBillboardCount, PrimitiveMode_TriangleStrip, 0, 4);
}
while (billboardCount > 0);
billboardVector.clear();
}
}
}
else
{
Renderer::SetIndexBuffer(&s_quadIndexBuffer);
Renderer::SetVertexBuffer(&m_billboardPointBuffer);
for (auto& matIt : layer.billboards)
{
const Material* material = matIt.first;
auto& entry = matIt.second;
auto& billboardVector = entry.billboards;
unsigned int billboardCount = billboardVector.size();
if (billboardCount > 0)
{
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
const Shader* shader = material->Apply(ShaderFlags_Billboard | ShaderFlags_VertexColor);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
{
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
// Position de la caméra
shader->SendVector(shaderUniforms->eyePosition, Renderer::GetMatrix(MatrixType_ViewProj).GetTranslation());
lastShader = shader;
}
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = std::min(s_maxQuads, m_billboardPointBuffer.GetVertexCount()/4);
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
BufferMapper<VertexBuffer> vertexMapper(m_billboardPointBuffer, BufferAccess_DiscardAndWrite, 0, renderedBillboardCount*4);
BillboardPoint* vertices = reinterpret_cast<BillboardPoint*>(vertexMapper.GetPointer());
for (unsigned int i = 0; i < renderedBillboardCount; ++i)
{
const ForwardRenderQueue::BillboardData& billboard = *data++;
vertices->color = billboard.color;
vertices->position = billboard.center;
vertices->sinCos = billboard.sinCos;
vertices->size = billboard.size;
vertices->uv.Set(0.f, 1.f);
vertices++;
vertices->color = billboard.color;
vertices->position = billboard.center;
vertices->sinCos = billboard.sinCos;
vertices->size = billboard.size;
vertices->uv.Set(1.f, 1.f);
vertices++;
vertices->color = billboard.color;
vertices->position = billboard.center;
vertices->sinCos = billboard.sinCos;
vertices->size = billboard.size;
vertices->uv.Set(0.f, 0.f);
vertices++;
vertices->color = billboard.color;
vertices->position = billboard.center;
vertices->sinCos = billboard.sinCos;
vertices->size = billboard.size;
vertices->uv.Set(1.f, 0.f);
vertices++;
}
vertexMapper.Unmap();
Renderer::DrawIndexedPrimitives(PrimitiveMode_TriangleList, 0, renderedBillboardCount*6);
}
while (billboardCount > 0);
billboardVector.clear();
}
}
}
}
void DepthRenderTechnique::DrawOpaqueModels(const SceneData& sceneData, ForwardRenderQueue::Layer& layer) const
{
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
for (auto& matIt : layer.opaqueModels)
{
auto& matEntry = matIt.second;
if (matEntry.enabled)
{
ForwardRenderQueue::MeshInstanceContainer& meshInstances = matEntry.meshMap;
if (!meshInstances.empty())
{
const Material* material = matIt.first;
bool instancing = m_instancingEnabled && matEntry.instancingEnabled;
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
UInt8 freeTextureUnit;
const Shader* shader = material->Apply((instancing) ? ShaderFlags_Instancing : 0, 0, &freeTextureUnit);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
{
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
lastShader = shader;
}
// Meshes
for (auto& meshIt : meshInstances)
{
const MeshData& meshData = meshIt.first;
auto& meshEntry = meshIt.second;
const Spheref& squaredBoundingSphere = meshEntry.squaredBoundingSphere;
std::vector<Matrix4f>& instances = meshEntry.instances;
if (!instances.empty())
{
const IndexBuffer* indexBuffer = meshData.indexBuffer;
const VertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Gestion du draw call avant la boucle de rendu
Renderer::DrawCall drawFunc;
Renderer::DrawCallInstanced instancedDrawFunc;
unsigned int indexCount;
if (indexBuffer)
{
drawFunc = Renderer::DrawIndexedPrimitives;
instancedDrawFunc = Renderer::DrawIndexedPrimitivesInstanced;
indexCount = indexBuffer->GetIndexCount();
}
else
{
drawFunc = Renderer::DrawPrimitives;
instancedDrawFunc = Renderer::DrawPrimitivesInstanced;
indexCount = vertexBuffer->GetVertexCount();
}
Renderer::SetIndexBuffer(indexBuffer);
Renderer::SetVertexBuffer(vertexBuffer);
if (instancing)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(VertexDeclaration::Get(VertexLayout_Matrix4));
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Le nombre maximum d'instances en une fois
while (instanceCount > 0)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// On remplit l'instancing buffer avec nos matrices world
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
// Et on affiche
instancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
}
}
else
{
// Sans instancing, on doit effectuer un draw call pour chaque instance
// Cela reste néanmoins plus rapide que l'instancing en dessous d'un certain nombre d'instances
// À cause du temps de modification du buffer d'instancing
for (const Matrix4f& matrix : instances)
{
Renderer::SetMatrix(MatrixType_World, matrix);
drawFunc(meshData.primitiveMode, 0, indexCount);
}
}
instances.clear();
}
}
}
// Et on remet à zéro les données
matEntry.enabled = false;
matEntry.instancingEnabled = false;
}
}
}
const DepthRenderTechnique::ShaderUniforms* DepthRenderTechnique::GetShaderUniforms(const Shader* shader) const
{
auto it = m_shaderUniforms.find(shader);
if (it == m_shaderUniforms.end())
{
ShaderUniforms uniforms;
uniforms.shaderReleaseSlot.Connect(shader->OnShaderRelease, this, &DepthRenderTechnique::OnShaderInvalidated);
uniforms.shaderUniformInvalidatedSlot.Connect(shader->OnShaderUniformInvalidated, this, &DepthRenderTechnique::OnShaderInvalidated);
uniforms.eyePosition = shader->GetUniformLocation("EyePosition");
uniforms.textureOverlay = shader->GetUniformLocation("TextureOverlay");
it = m_shaderUniforms.emplace(shader, std::move(uniforms)).first;
}
return &it->second;
}
void DepthRenderTechnique::OnShaderInvalidated(const Shader* shader) const
{
m_shaderUniforms.erase(shader);
}
IndexBuffer DepthRenderTechnique::s_quadIndexBuffer;
VertexBuffer DepthRenderTechnique::s_quadVertexBuffer;
VertexDeclaration DepthRenderTechnique::s_billboardInstanceDeclaration;
VertexDeclaration DepthRenderTechnique::s_billboardVertexDeclaration;
}

View File

@@ -3,9 +3,11 @@
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/Formats/MeshLoader.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/SkeletalModel.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <memory>
#include <Nazara/Graphics/Debug.hpp>
@@ -14,6 +16,33 @@ namespace Nz
{
namespace
{
void LoadMaterials(Model* model, const ModelParameters& parameters)
{
unsigned int matCount = model->GetMaterialCount();
for (unsigned int i = 0; i < matCount; ++i)
{
const ParameterList& matData = model->GetMesh()->GetMaterialData(i);
String filePath;
if (matData.GetStringParameter(MaterialData::FilePath, &filePath))
{
MaterialRef material = Material::New();
if (material->LoadFromFile(filePath, parameters.material))
model->SetMaterial(i, std::move(material));
else
NazaraWarning("Failed to load material from file " + String::Number(i));
}
else if (matData.HasParameter(MaterialData::CustomDefined))
{
MaterialRef material = Material::New();
material->BuildFromParameters(matData, parameters.material);
model->SetMaterial(i, std::move(material));
}
}
}
Ternary CheckStatic(Stream& stream, const ModelParameters& parameters)
{
NazaraUnused(stream);
@@ -46,22 +75,7 @@ namespace Nz
model->SetMesh(mesh);
if (parameters.loadMaterials)
{
unsigned int matCount = model->GetMaterialCount();
for (unsigned int i = 0; i < matCount; ++i)
{
String mat = mesh->GetMaterial(i);
if (!mat.IsEmpty())
{
MaterialRef material = Material::New();
if (material->LoadFromFile(mat, parameters.material))
model->SetMaterial(i, material);
else
NazaraWarning("Failed to load material #" + String::Number(i));
}
}
}
LoadMaterials(model, parameters);
return true;
}
@@ -98,22 +112,7 @@ namespace Nz
model->SetMesh(mesh);
if (parameters.loadMaterials)
{
unsigned int matCount = model->GetMaterialCount();
for (unsigned int i = 0; i < matCount; ++i)
{
String mat = mesh->GetMaterial(i);
if (!mat.IsEmpty())
{
MaterialRef material = Material::New();
if (material->LoadFromFile(mat, parameters.material))
model->SetMaterial(i, material);
else
NazaraWarning("Failed to load material #" + String::Number(i));
}
}
}
LoadMaterials(model, parameters);
return true;
}

View File

@@ -77,7 +77,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
Vector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
@@ -120,7 +120,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
@@ -165,7 +165,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
@@ -212,7 +212,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
Vector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
@@ -253,7 +253,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
Vector2f defaultSinCos(0.f, 1.f); // sin(0) = 0, cos(0) = 1
if (!sinCosPtr)
@@ -296,7 +296,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et colorPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)
@@ -341,7 +341,7 @@ namespace Nz
{
NazaraAssert(material, "Invalid material");
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seont remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
///DOC: sinCosPtr et alphaPtr peuvent être nuls, ils seront remplacés respectivement par Vector2f(0.f, 1.f) et Color::White
float defaultRotation = 0.f;
if (!anglePtr)

View File

@@ -29,7 +29,7 @@ namespace Nz
Color color;
Vector3f position;
Vector2f size;
Vector2f sinCos; // doit suivre size
Vector2f sinCos; // must follow `size` (both will be sent as a Vector4f)
Vector2f uv;
};
@@ -156,6 +156,9 @@ namespace Nz
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData0, ComponentType_Float3, NazaraOffsetOf(ForwardRenderQueue::BillboardData, center));
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData1, ComponentType_Float4, NazaraOffsetOf(ForwardRenderQueue::BillboardData, size)); // Englobe sincos
s_billboardInstanceDeclaration.EnableComponent(VertexComponent_InstanceData2, ComponentType_Color, NazaraOffsetOf(ForwardRenderQueue::BillboardData, color));
s_shadowSampler.SetFilterMode(SamplerFilter_Bilinear);
s_shadowSampler.SetWrapMode(SamplerWrap_Clamp);
}
catch (const std::exception& e)
{
@@ -487,7 +490,8 @@ namespace Nz
bool instancing = m_instancingEnabled && (!material->IsLightingEnabled() || noPointSpotLight) && matEntry.instancingEnabled;
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
const Shader* shader = material->Apply((instancing) ? ShaderFlags_Instancing : 0);
UInt8 freeTextureUnit;
const Shader* shader = material->Apply((instancing) ? ShaderFlags_Instancing : 0, 0, &freeTextureUnit);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
@@ -571,7 +575,10 @@ namespace Nz
// Sends the uniforms
for (unsigned int i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, i*shaderUniforms->lightOffset);
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, shaderUniforms->lightOffset*i, freeTextureUnit + i);
// Et on passe à l'affichage
drawFunc(meshData.primitiveMode, 0, indexCount);
}
const Matrix4f* instanceMatrices = &instances[0];
@@ -630,7 +637,7 @@ namespace Nz
// Sends the light uniforms to the shader
for (unsigned int i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, shaderUniforms->lightOffset*i);
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, shaderUniforms->lightOffset*i, freeTextureUnit + i);
// Et on passe à l'affichage
drawFunc(meshData.primitiveMode, 0, indexCount);
@@ -680,7 +687,8 @@ namespace Nz
const Material* material = modelData.material;
// On commence par appliquer du matériau (et récupérer le shader ainsi activé)
const Shader* shader = material->Apply();
UInt8 freeTextureUnit;
const Shader* shader = material->Apply(0, 0, &freeTextureUnit);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
@@ -699,7 +707,7 @@ namespace Nz
lightCount = std::min(m_renderQueue.directionalLights.size(), static_cast<decltype(m_renderQueue.directionalLights.size())>(NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS));
for (unsigned int i = 0; i < lightCount; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset * i);
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset * i, freeTextureUnit++);
}
lastShader = shader;
@@ -738,7 +746,7 @@ namespace Nz
ChooseLights(Spheref(position, radius), false);
for (unsigned int i = lightCount; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset*i);
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset*i, freeTextureUnit++);
}
Renderer::SetMatrix(MatrixType_World, matrix);
@@ -770,9 +778,13 @@ namespace Nz
uniforms.lightUniforms.locations.type = type0Location;
uniforms.lightUniforms.locations.color = shader->GetUniformLocation("Lights[0].color");
uniforms.lightUniforms.locations.factors = shader->GetUniformLocation("Lights[0].factors");
uniforms.lightUniforms.locations.lightViewProjMatrix = shader->GetUniformLocation("LightViewProjMatrix[0]");
uniforms.lightUniforms.locations.parameters1 = shader->GetUniformLocation("Lights[0].parameters1");
uniforms.lightUniforms.locations.parameters2 = shader->GetUniformLocation("Lights[0].parameters2");
uniforms.lightUniforms.locations.parameters3 = shader->GetUniformLocation("Lights[0].parameters3");
uniforms.lightUniforms.locations.pointLightShadowMap = shader->GetUniformLocation("PointLightShadowMap[0]");
uniforms.lightUniforms.locations.shadowMapping = shader->GetUniformLocation("Lights[0].shadowMapping");
uniforms.lightUniforms.locations.directionalSpotLightShadowMap = shader->GetUniformLocation("DirectionalSpotLightShadowMap[0]");
}
else
uniforms.hasLightUniforms = false;
@@ -789,6 +801,7 @@ namespace Nz
}
IndexBuffer ForwardRenderTechnique::s_quadIndexBuffer;
TextureSampler ForwardRenderTechnique::s_shadowSampler;
VertexBuffer ForwardRenderTechnique::s_quadVertexBuffer;
VertexDeclaration ForwardRenderTechnique::s_billboardInstanceDeclaration;
VertexDeclaration ForwardRenderTechnique::s_billboardVertexDeclaration;

View File

@@ -8,6 +8,7 @@
#include <Nazara/Core/Log.hpp>
#include <Nazara/Graphics/Config.hpp>
#include <Nazara/Graphics/DeferredRenderTechnique.hpp>
#include <Nazara/Graphics/DepthRenderTechnique.hpp>
#include <Nazara/Graphics/ForwardRenderTechnique.hpp>
#include <Nazara/Graphics/GuillotineTextureAtlas.hpp>
#include <Nazara/Graphics/Material.hpp>
@@ -20,7 +21,6 @@
#include <Nazara/Graphics/SkyboxBackground.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Graphics/Formats/MeshLoader.hpp>
#include <Nazara/Graphics/Formats/OBJLoader.hpp>
#include <Nazara/Graphics/Formats/TextureLoader.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Utility/Font.hpp>
@@ -96,14 +96,17 @@ namespace Nz
return false;
}
// Loaders
Loaders::RegisterOBJ();
// Loaders génériques
Loaders::RegisterMesh();
Loaders::RegisterTexture();
// RenderTechniques
if (!DepthRenderTechnique::Initialize())
{
NazaraError("Failed to initialize Depth Rendering");
return false;
}
if (!ForwardRenderTechnique::Initialize())
{
NazaraError("Failed to initialize Forward Rendering");
@@ -176,10 +179,10 @@ namespace Nz
// Loaders
Loaders::UnregisterMesh();
Loaders::UnregisterOBJ();
Loaders::UnregisterTexture();
DeferredRenderTechnique::Uninitialize();
DepthRenderTechnique::Uninitialize();
ForwardRenderTechnique::Uninitialize();
SkinningManager::Uninitialize();
ParticleRenderer::Uninitialize();

View File

@@ -5,6 +5,7 @@
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Graphics/AbstractRenderQueue.hpp>
#include <Nazara/Graphics/Enums.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <Nazara/Math/Sphere.hpp>
#include <Nazara/Renderer/Renderer.hpp>
@@ -18,7 +19,11 @@
namespace Nz
{
Light::Light(LightType type) :
m_type(type)
m_type(type),
m_shadowMapFormat(PixelFormatType_Depth16),
m_shadowMapSize(512, 512),
m_shadowCastingEnabled(false),
m_shadowMapUpdated(false)
{
SetAmbientFactor((type == LightType_Directional) ? 0.2f : 0.f);
SetAttenuation(0.9f);
@@ -31,6 +36,11 @@ namespace Nz
void Light::AddToRenderQueue(AbstractRenderQueue* renderQueue, const Matrix4f& transformMatrix) const
{
static Matrix4f biasMatrix(0.5f, 0.f, 0.f, 0.f,
0.f, 0.5f, 0.f, 0.f,
0.f, 0.f, 0.5f, 0.f,
0.5f, 0.5f, 0.5f, 1.f);
switch (m_type)
{
case LightType_Directional:
@@ -40,6 +50,8 @@ namespace Nz
light.color = m_color;
light.diffuseFactor = m_diffuseFactor;
light.direction = transformMatrix.Transform(Vector3f::Forward(), 0.f);
light.shadowMap = m_shadowMap.Get();
light.transformMatrix = Matrix4f::ViewMatrix(transformMatrix.GetRotation() * Vector3f::Forward() * 100.f, transformMatrix.GetRotation()) * Matrix4f::Ortho(0.f, 100.f, 100.f, 0.f, 1.f, 100.f) * biasMatrix;
renderQueue->AddDirectionalLight(light);
break;
@@ -55,6 +67,7 @@ namespace Nz
light.invRadius = m_invRadius;
light.position = transformMatrix.GetTranslation();
light.radius = m_radius;
light.shadowMap = m_shadowMap.Get();
renderQueue->AddPointLight(light);
break;
@@ -74,6 +87,8 @@ namespace Nz
light.outerAngleTangent = m_outerAngleTangent;
light.position = transformMatrix.GetTranslation();
light.radius = m_radius;
light.shadowMap = m_shadowMap.Get();
light.transformMatrix = Matrix4f::ViewMatrix(transformMatrix.GetTranslation(), transformMatrix.GetRotation()) * Matrix4f::Perspective(m_outerAngle*2.f, 1.f, 0.1f, m_radius) * biasMatrix;
renderQueue->AddSpotLight(light);
break;
@@ -178,4 +193,19 @@ namespace Nz
break;
}
}
void Light::UpdateShadowMap() const
{
if (m_shadowCastingEnabled)
{
if (!m_shadowMap)
m_shadowMap = Texture::New();
m_shadowMap->Create((m_type == LightType_Point) ? ImageType_Cubemap : ImageType_2D, m_shadowMapFormat, m_shadowMapSize.x, m_shadowMapSize.y);
}
else
m_shadowMap.Reset();
m_shadowMapUpdated = true;
}
}

View File

@@ -7,6 +7,7 @@
#endif
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Renderer/OpenGL.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/UberShaderPreprocessor.hpp>
@@ -43,23 +44,6 @@ namespace Nz
return true;
}
Material::Material()
{
Reset();
}
Material::Material(const Material& material) :
RefCounted(),
Resource(material)
{
Copy(material);
}
Material::~Material()
{
OnMaterialRelease(this);
}
const Shader* Material::Apply(UInt32 shaderFlags, UInt8 textureUnit, UInt8* lastUsedUnit) const
{
const ShaderInstance& instance = m_shaders[shaderFlags];
@@ -139,240 +123,164 @@ namespace Nz
return instance.shader;
}
void Material::Enable(RendererParameter renderParameter, bool enable)
void Material::BuildFromParameters(const ParameterList& matData, const MaterialParams& matParams)
{
#ifdef NAZARA_DEBUG
if (renderParameter > RendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return;
}
#endif
Color color;
bool isEnabled;
float fValue;
int iValue;
String path;
m_states.parameters[renderParameter] = enable;
}
ErrorFlags errFlags(ErrorFlag_Silent | ErrorFlag_ThrowExceptionDisabled, true);
void Material::EnableAlphaTest(bool alphaTest)
{
m_alphaTestEnabled = alphaTest;
InvalidateShaders();
}
if (matData.GetFloatParameter(MaterialData::AlphaThreshold, &fValue))
SetAlphaThreshold(fValue);
void Material::EnableDepthSorting(bool depthSorting)
{
m_depthSortingEnabled = depthSorting;
}
if (matData.GetBooleanParameter(MaterialData::AlphaTest, &isEnabled))
EnableAlphaTest(isEnabled);
void Material::EnableLighting(bool lighting)
{
m_lightingEnabled = lighting;
if (matData.GetColorParameter(MaterialData::AmbientColor, &color))
SetAmbientColor(color);
InvalidateShaders();
}
if (matData.GetIntegerParameter(MaterialData::DepthFunc, &iValue))
SetDepthFunc(static_cast<RendererComparison>(iValue));
void Material::EnableTransform(bool transform)
{
m_transformEnabled = transform;
if (matData.GetBooleanParameter(MaterialData::DepthSorting, &isEnabled))
EnableDepthSorting(isEnabled);
InvalidateShaders();
}
if (matData.GetColorParameter(MaterialData::DiffuseColor, &color))
SetDiffuseColor(color);
Texture* Material::GetAlphaMap() const
{
return m_alphaMap;
}
if (matData.GetIntegerParameter(MaterialData::DstBlend, &iValue))
SetDstBlend(static_cast<BlendFunc>(iValue));
float Material::GetAlphaThreshold() const
{
return m_alphaThreshold;
}
if (matData.GetIntegerParameter(MaterialData::FaceCulling, &iValue))
SetFaceCulling(static_cast<FaceSide>(iValue));
Color Material::GetAmbientColor() const
{
return m_ambientColor;
}
if (matData.GetIntegerParameter(MaterialData::FaceFilling, &iValue))
SetFaceFilling(static_cast<FaceFilling>(iValue));
RendererComparison Material::GetDepthFunc() const
{
return m_states.depthFunc;
}
if (matData.GetBooleanParameter(MaterialData::Lighting, &isEnabled))
EnableLighting(isEnabled);
Color Material::GetDiffuseColor() const
{
return m_diffuseColor;
}
if (matData.GetFloatParameter(MaterialData::LineWidth, &fValue))
m_states.lineWidth = fValue;
TextureSampler& Material::GetDiffuseSampler()
{
return m_diffuseSampler;
}
if (matData.GetFloatParameter(MaterialData::PointSize, &fValue))
m_states.pointSize = fValue;
const TextureSampler& Material::GetDiffuseSampler() const
{
return m_diffuseSampler;
}
if (matData.GetColorParameter(MaterialData::SpecularColor, &color))
SetSpecularColor(color);
Texture* Material::GetDiffuseMap() const
{
return m_diffuseMap;
}
if (matData.GetFloatParameter(MaterialData::Shininess, &fValue))
SetShininess(fValue);
BlendFunc Material::GetDstBlend() const
{
return m_states.dstBlend;
}
if (matData.GetIntegerParameter(MaterialData::SrcBlend, &iValue))
SetSrcBlend(static_cast<BlendFunc>(iValue));
Texture* Material::GetEmissiveMap() const
{
return m_emissiveMap;
}
if (matData.GetBooleanParameter(MaterialData::Transform, &isEnabled))
EnableTransform(isEnabled);
FaceSide Material::GetFaceCulling() const
{
return m_states.faceCulling;
}
// RendererParameter
if (matData.GetBooleanParameter(MaterialData::Blending, &isEnabled))
Enable(RendererParameter_Blend, isEnabled);
FaceFilling Material::GetFaceFilling() const
{
return m_states.faceFilling;
}
if (matData.GetBooleanParameter(MaterialData::ColorWrite, &isEnabled))
Enable(RendererParameter_ColorWrite, isEnabled);
Texture* Material::GetHeightMap() const
{
return m_heightMap;
}
if (matData.GetBooleanParameter(MaterialData::DepthBuffer, &isEnabled))
Enable(RendererParameter_DepthBuffer, isEnabled);
Texture* Material::GetNormalMap() const
{
return m_normalMap;
}
if (matData.GetBooleanParameter(MaterialData::DepthWrite, &isEnabled))
Enable(RendererParameter_DepthWrite, isEnabled);
const RenderStates& Material::GetRenderStates() const
{
return m_states;
}
if (matData.GetBooleanParameter(MaterialData::FaceCulling, &isEnabled))
Enable(RendererParameter_FaceCulling, isEnabled);
const UberShader* Material::GetShader() const
{
return m_uberShader;
}
if (matData.GetBooleanParameter(MaterialData::ScissorTest, &isEnabled))
Enable(RendererParameter_ScissorTest, isEnabled);
const UberShaderInstance* Material::GetShaderInstance(UInt32 flags) const
{
const ShaderInstance& instance = m_shaders[flags];
if (!instance.uberInstance)
GenerateShader(flags);
if (matData.GetBooleanParameter(MaterialData::StencilTest, &isEnabled))
Enable(RendererParameter_StencilTest, isEnabled);
return instance.uberInstance;
}
// Samplers
if (matData.GetIntegerParameter(MaterialData::DiffuseAnisotropyLevel, &iValue))
m_diffuseSampler.SetAnisotropyLevel(static_cast<UInt8>(iValue));
float Material::GetShininess() const
{
return m_shininess;
}
if (matData.GetIntegerParameter(MaterialData::DiffuseFilter, &iValue))
m_diffuseSampler.SetFilterMode(static_cast<SamplerFilter>(iValue));
Color Material::GetSpecularColor() const
{
return m_specularColor;
}
if (matData.GetIntegerParameter(MaterialData::DiffuseWrap, &iValue))
m_diffuseSampler.SetWrapMode(static_cast<SamplerWrap>(iValue));
Texture* Material::GetSpecularMap() const
{
return m_specularMap;
}
if (matData.GetIntegerParameter(MaterialData::SpecularAnisotropyLevel, &iValue))
m_specularSampler.SetAnisotropyLevel(static_cast<UInt8>(iValue));
TextureSampler& Material::GetSpecularSampler()
{
return m_specularSampler;
}
if (matData.GetIntegerParameter(MaterialData::SpecularFilter, &iValue))
m_specularSampler.SetFilterMode(static_cast<SamplerFilter>(iValue));
const TextureSampler& Material::GetSpecularSampler() const
{
return m_specularSampler;
}
if (matData.GetIntegerParameter(MaterialData::SpecularWrap, &iValue))
m_specularSampler.SetWrapMode(static_cast<SamplerWrap>(iValue));
BlendFunc Material::GetSrcBlend() const
{
return m_states.srcBlend;
}
// Stencil
if (matData.GetIntegerParameter(MaterialData::StencilCompare, &iValue))
m_states.frontFace.stencilCompare = static_cast<RendererComparison>(iValue);
bool Material::HasAlphaMap() const
{
return m_alphaMap.IsValid();
}
if (matData.GetIntegerParameter(MaterialData::StencilFail, &iValue))
m_states.frontFace.stencilFail = static_cast<StencilOperation>(iValue);
bool Material::HasDiffuseMap() const
{
return m_diffuseMap.IsValid();
}
if (matData.GetIntegerParameter(MaterialData::StencilPass, &iValue))
m_states.frontFace.stencilPass = static_cast<StencilOperation>(iValue);
bool Material::HasEmissiveMap() const
{
return m_emissiveMap.IsValid();
}
if (matData.GetIntegerParameter(MaterialData::StencilZFail, &iValue))
m_states.frontFace.stencilZFail = static_cast<StencilOperation>(iValue);
bool Material::HasHeightMap() const
{
return m_heightMap.IsValid();
}
if (matData.GetIntegerParameter(MaterialData::StencilMask, &iValue))
m_states.frontFace.stencilMask = static_cast<UInt32>(iValue);
bool Material::HasNormalMap() const
{
return m_normalMap.IsValid();
}
if (matData.GetIntegerParameter(MaterialData::StencilReference, &iValue))
m_states.frontFace.stencilReference = static_cast<unsigned int>(iValue);
bool Material::HasSpecularMap() const
{
return m_specularMap.IsValid();
}
// Stencil (back)
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilCompare, &iValue))
m_states.backFace.stencilCompare = static_cast<RendererComparison>(iValue);
bool Material::IsAlphaTestEnabled() const
{
return m_alphaTestEnabled;
}
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilFail, &iValue))
m_states.backFace.stencilFail = static_cast<StencilOperation>(iValue);
bool Material::IsDepthSortingEnabled() const
{
return m_depthSortingEnabled;
}
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilPass, &iValue))
m_states.backFace.stencilPass = static_cast<StencilOperation>(iValue);
bool Material::IsEnabled(RendererParameter parameter) const
{
#ifdef NAZARA_DEBUG
if (parameter > RendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return false;
}
#endif
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilZFail, &iValue))
m_states.backFace.stencilZFail = static_cast<StencilOperation>(iValue);
return m_states.parameters[parameter];
}
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilMask, &iValue))
m_states.backFace.stencilMask = static_cast<UInt32>(iValue);
bool Material::IsLightingEnabled() const
{
return m_lightingEnabled;
}
if (matData.GetIntegerParameter(MaterialData::BackFaceStencilReference, &iValue))
m_states.backFace.stencilReference = static_cast<unsigned int>(iValue);
bool Material::IsTransformEnabled() const
{
return m_transformEnabled;
}
// Textures
if (matParams.loadAlphaMap && matData.GetStringParameter(MaterialData::AlphaTexturePath, &path))
SetAlphaMap(path);
bool Material::LoadFromFile(const String& filePath, const MaterialParams& params)
{
return MaterialLoader::LoadFromFile(this, filePath, params);
}
if (matParams.loadDiffuseMap && matData.GetStringParameter(MaterialData::DiffuseTexturePath, &path))
SetDiffuseMap(path);
bool Material::LoadFromMemory(const void* data, std::size_t size, const MaterialParams& params)
{
return MaterialLoader::LoadFromMemory(this, data, size, params);
}
if (matParams.loadEmissiveMap && matData.GetStringParameter(MaterialData::EmissiveTexturePath, &path))
SetEmissiveMap(path);
bool Material::LoadFromStream(Stream& stream, const MaterialParams& params)
{
return MaterialLoader::LoadFromStream(this, stream, params);
if (matParams.loadHeightMap && matData.GetStringParameter(MaterialData::HeightTexturePath, &path))
SetHeightMap(path);
if (matParams.loadNormalMap && matData.GetStringParameter(MaterialData::NormalTexturePath, &path))
SetNormalMap(path);
if (matParams.loadSpecularMap && matData.GetStringParameter(MaterialData::SpecularTexturePath, &path))
SetSpecularMap(path);
SetShader(matParams.shaderName);
}
void Material::Reset()
@@ -380,6 +288,7 @@ namespace Nz
OnMaterialReset(this);
m_alphaMap.Reset();
m_depthMaterial.Reset();
m_diffuseMap.Reset();
m_emissiveMap.Reset();
m_heightMap.Reset();
@@ -397,6 +306,8 @@ namespace Nz
m_diffuseColor = Color::White;
m_diffuseSampler = TextureSampler();
m_lightingEnabled = true;
m_shadowCastingEnabled = true;
m_shadowReceiveEnabled = true;
m_shininess = 50.f;
m_specularColor = Color::White;
m_specularSampler = TextureSampler();
@@ -408,252 +319,32 @@ namespace Nz
SetShader("Basic");
}
bool Material::SetAlphaMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetAlphaMap(std::move(texture));
return true;
}
void Material::SetAlphaMap(TextureRef alphaMap)
{
m_alphaMap = std::move(alphaMap);
InvalidateShaders();
}
void Material::SetAlphaThreshold(float alphaThreshold)
{
m_alphaThreshold = alphaThreshold;
}
void Material::SetAmbientColor(const Color& ambient)
{
m_ambientColor = ambient;
}
void Material::SetDepthFunc(RendererComparison depthFunc)
{
m_states.depthFunc = depthFunc;
}
void Material::SetDiffuseColor(const Color& diffuse)
{
m_diffuseColor = diffuse;
}
bool Material::SetDiffuseMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetDiffuseMap(std::move(texture));
return true;
}
void Material::SetDiffuseMap(TextureRef diffuseMap)
{
m_diffuseMap = std::move(diffuseMap);
InvalidateShaders();
}
void Material::SetDiffuseSampler(const TextureSampler& sampler)
{
m_diffuseSampler = sampler;
}
void Material::SetDstBlend(BlendFunc func)
{
m_states.dstBlend = func;
}
bool Material::SetEmissiveMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetEmissiveMap(std::move(texture));
return true;
}
void Material::SetEmissiveMap(TextureRef emissiveMap)
{
m_emissiveMap = std::move(emissiveMap);
InvalidateShaders();
}
void Material::SetFaceCulling(FaceSide faceSide)
{
m_states.faceCulling = faceSide;
}
void Material::SetFaceFilling(FaceFilling filling)
{
m_states.faceFilling = filling;
}
bool Material::SetHeightMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetHeightMap(std::move(texture));
return true;
}
void Material::SetHeightMap(TextureRef heightMap)
{
m_heightMap = std::move(heightMap);
InvalidateShaders();
}
bool Material::SetNormalMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetNormalMap(std::move(texture));
return true;
}
void Material::SetNormalMap(TextureRef normalMap)
{
m_normalMap = std::move(normalMap);
InvalidateShaders();
}
void Material::SetRenderStates(const RenderStates& states)
{
m_states = states;
}
void Material::SetShader(UberShaderConstRef uberShader)
{
m_uberShader = std::move(uberShader);
InvalidateShaders();
}
bool Material::SetShader(const String& uberShaderName)
{
UberShaderConstRef uberShader = UberShaderLibrary::Get(uberShaderName);
if (!uberShader)
return false;
SetShader(std::move(uberShader));
return true;
}
void Material::SetShininess(float shininess)
{
m_shininess = shininess;
}
void Material::SetSpecularColor(const Color& specular)
{
m_specularColor = specular;
}
bool Material::SetSpecularMap(const String& textureName)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
return false;
}
SetSpecularMap(std::move(texture));
return true;
}
void Material::SetSpecularMap(TextureRef specularMap)
{
m_specularMap = std::move(specularMap);
InvalidateShaders();
}
void Material::SetSpecularSampler(const TextureSampler& sampler)
{
m_specularSampler = sampler;
}
void Material::SetSrcBlend(BlendFunc func)
{
m_states.srcBlend = func;
}
Material& Material::operator=(const Material& material)
{
Resource::operator=(material);
Copy(material);
return *this;
}
MaterialRef Material::GetDefault()
{
return s_defaultMaterial;
}
void Material::Copy(const Material& material)
{
// Copie des états de base
m_alphaTestEnabled = material.m_alphaTestEnabled;
m_alphaThreshold = material.m_alphaThreshold;
m_ambientColor = material.m_ambientColor;
m_depthSortingEnabled = material.m_depthSortingEnabled;
m_diffuseColor = material.m_diffuseColor;
m_diffuseSampler = material.m_diffuseSampler;
m_lightingEnabled = material.m_lightingEnabled;
m_shininess = material.m_shininess;
m_specularColor = material.m_specularColor;
m_specularSampler = material.m_specularSampler;
m_states = material.m_states;
m_transformEnabled = material.m_transformEnabled;
m_alphaTestEnabled = material.m_alphaTestEnabled;
m_alphaThreshold = material.m_alphaThreshold;
m_ambientColor = material.m_ambientColor;
m_depthSortingEnabled = material.m_depthSortingEnabled;
m_diffuseColor = material.m_diffuseColor;
m_diffuseSampler = material.m_diffuseSampler;
m_lightingEnabled = material.m_lightingEnabled;
m_shininess = material.m_shininess;
m_shadowCastingEnabled = material.m_shadowCastingEnabled;
m_shadowReceiveEnabled = material.m_shadowReceiveEnabled;
m_specularColor = material.m_specularColor;
m_specularSampler = material.m_specularSampler;
m_states = material.m_states;
m_transformEnabled = material.m_transformEnabled;
// Copie des références de texture
m_alphaMap = material.m_alphaMap;
m_diffuseMap = material.m_diffuseMap;
m_emissiveMap = material.m_emissiveMap;
m_heightMap = material.m_heightMap;
m_normalMap = material.m_normalMap;
m_specularMap = material.m_specularMap;
// Copie de la référence vers l'Über-Shader
m_alphaMap = material.m_alphaMap;
m_depthMaterial = material.m_depthMaterial;
m_diffuseMap = material.m_diffuseMap;
m_emissiveMap = material.m_emissiveMap;
m_heightMap = material.m_heightMap;
m_normalMap = material.m_normalMap;
m_specularMap = material.m_specularMap;
m_uberShader = material.m_uberShader;
// On copie les instances de shader par la même occasion
@@ -671,6 +362,7 @@ namespace Nz
list.SetParameter("LIGHTING", m_lightingEnabled);
list.SetParameter("NORMAL_MAPPING", m_normalMap.IsValid());
list.SetParameter("PARALLAX_MAPPING", m_heightMap.IsValid());
list.SetParameter("SHADOW_MAPPING", m_shadowReceiveEnabled);
list.SetParameter("SPECULAR_MAPPING", m_specularMap.IsValid());
list.SetParameter("TEXTURE_MAPPING", m_alphaMap.IsValid() || m_diffuseMap.IsValid() || m_emissiveMap.IsValid() ||
m_normalMap.IsValid() || m_heightMap.IsValid() || m_specularMap.IsValid() ||
@@ -704,12 +396,6 @@ namespace Nz
#undef CacheUniform
}
void Material::InvalidateShaders()
{
for (ShaderInstance& instance : m_shaders)
instance.uberInstance = nullptr;
}
bool Material::Initialize()
{
if (!MaterialLibrary::Initialize())
@@ -744,18 +430,35 @@ namespace Nz
String fragmentShader(reinterpret_cast<const char*>(r_phongLightingFragmentShader), sizeof(r_phongLightingFragmentShader));
String vertexShader(reinterpret_cast<const char*>(r_phongLightingVertexShader), sizeof(r_phongLightingVertexShader));
uberShader->SetShader(ShaderStageType_Fragment, fragmentShader, "FLAG_DEFERRED FLAG_TEXTUREOVERLAY ALPHA_MAPPING ALPHA_TEST AUTO_TEXCOORDS DIFFUSE_MAPPING EMISSIVE_MAPPING LIGHTING NORMAL_MAPPING PARALLAX_MAPPING SPECULAR_MAPPING");
uberShader->SetShader(ShaderStageType_Vertex, vertexShader, "FLAG_BILLBOARD FLAG_DEFERRED FLAG_INSTANCING FLAG_VERTEXCOLOR COMPUTE_TBNMATRIX LIGHTING PARALLAX_MAPPING TEXTURE_MAPPING TRANSFORM UNIFORM_VERTEX_DEPTH");
uberShader->SetShader(ShaderStageType_Fragment, fragmentShader, "FLAG_DEFERRED FLAG_TEXTUREOVERLAY ALPHA_MAPPING ALPHA_TEST AUTO_TEXCOORDS DIFFUSE_MAPPING EMISSIVE_MAPPING LIGHTING NORMAL_MAPPING PARALLAX_MAPPING SHADOW_MAPPING SPECULAR_MAPPING");
uberShader->SetShader(ShaderStageType_Vertex, vertexShader, "FLAG_BILLBOARD FLAG_DEFERRED FLAG_INSTANCING FLAG_VERTEXCOLOR COMPUTE_TBNMATRIX LIGHTING PARALLAX_MAPPING SHADOW_MAPPING TEXTURE_MAPPING TRANSFORM UNIFORM_VERTEX_DEPTH");
UberShaderLibrary::Register("PhongLighting", uberShader);
}
// Une fois les shaders de base enregistrés, on peut créer le matériau par défaut
s_defaultMaterial = Material::New();
// Once the base shaders are registered, we can now set some default materials
s_defaultMaterial = New();
s_defaultMaterial->Enable(RendererParameter_FaceCulling, false);
s_defaultMaterial->SetFaceFilling(FaceFilling_Line);
MaterialLibrary::Register("Default", s_defaultMaterial);
MaterialRef mat;
mat = New();
mat->Enable(RendererParameter_DepthWrite, false);
mat->Enable(RendererParameter_FaceCulling, false);
mat->EnableLighting(false);
MaterialLibrary::Register("Basic2D", std::move(mat));
mat = New();
mat->Enable(RendererParameter_Blend, true);
mat->Enable(RendererParameter_DepthWrite, false);
mat->Enable(RendererParameter_FaceCulling, false);
mat->EnableLighting(false);
mat->SetDstBlend(BlendFunc_InvSrcAlpha);
mat->SetSrcBlend(BlendFunc_SrcAlpha);
MaterialLibrary::Register("Translucent2D", std::move(mat));
return true;
}

View File

@@ -18,6 +18,7 @@ namespace Nz
"Advanced Forward",
"Basic Forward",
"Deferred Shading",
"Depth Pass",
"Light Pre-Pass",
"User"
};

File diff suppressed because one or more lines are too long

View File

@@ -8,6 +8,7 @@ layout(early_fragment_tests) in;
/********************Entrant********************/
in vec4 vColor;
in vec4 vLightSpacePos[3];
in mat3 vLightToWorld;
in vec3 vNormal;
in vec2 vTexCoord;
@@ -29,10 +30,13 @@ struct Light
vec4 parameters1;
vec4 parameters2;
vec2 parameters3;
bool shadowMapping;
};
// Lumières
uniform Light Lights[3];
uniform samplerCube PointLightShadowMap[3];
uniform sampler2D DirectionalSpotLightShadowMap[3];
// Matériau
uniform sampler2D MaterialAlphaMap;
@@ -81,6 +85,41 @@ vec4 EncodeNormal(in vec3 normal)
return vec4(vec2(atan(normal.y, normal.x)/kPI, normal.z), 0.0, 0.0);
}
float VectorToDepthValue(vec3 vec, float zNear, float zFar)
{
vec3 absVec = abs(vec);
float localZ = max(absVec.x, max(absVec.y, absVec.z));
float normZ = ((zFar + zNear) * localZ - (2.0*zFar*zNear)) / ((zFar - zNear)*localZ);
return (normZ + 1.0) * 0.5;
}
float CalculateDirectionalShadowFactor(int lightIndex)
{
vec4 lightSpacePos = vLightSpacePos[lightIndex];
return (texture(DirectionalSpotLightShadowMap[lightIndex], lightSpacePos.xy).x >= (lightSpacePos.z - 0.0005)) ? 1.0 : 0.0;
}
float CalculatePointShadowFactor(int lightIndex, vec3 lightToWorld, float zNear, float zFar)
{
return (texture(PointLightShadowMap[lightIndex], vec3(lightToWorld.x, -lightToWorld.y, -lightToWorld.z)).x >= VectorToDepthValue(lightToWorld, zNear, zFar)) ? 1.0 : 0.0;
}
float CalculateSpotShadowFactor(int lightIndex)
{
vec4 lightSpacePos = vLightSpacePos[lightIndex];
float visibility = 1.0;
float x,y;
for (y = -3.5; y <= 3.5; y+= 1.0)
for (x = -3.5; x <= 3.5; x+= 1.0)
visibility += (textureProj(DirectionalSpotLightShadowMap[lightIndex], lightSpacePos.xyw + vec3(x/1024.0 * lightSpacePos.w, y/1024.0 * lightSpacePos.w, 0.0)).x >= (lightSpacePos.z - 0.0005)/lightSpacePos.w) ? 1.0 : 0.0;
visibility /= 64.0;
return visibility;
}
void main()
{
vec4 diffuseColor = MaterialDiffuse * vColor;
@@ -168,6 +207,10 @@ void main()
for (int i = 0; i < 3; ++i)
{
vec4 lightColor = Lights[i].color;
float lightAmbientFactor = Lights[i].factors.x;
float lightDiffuseFactor = Lights[i].factors.y;
switch (Lights[i].type)
{
case LIGHT_DIRECTIONAL:
@@ -175,75 +218,120 @@ void main()
vec3 lightDir = -Lights[i].parameters1.xyz;
// Ambient
lightAmbient += Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
float att = 1.0;
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculateDirectionalShadowFactor(i);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
lightDiffuse += lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
// Specular
vec3 reflection = reflect(-lightDir, normal);
float specularFactor = max(dot(reflection, eyeVec), 0.0);
specularFactor = pow(specularFactor, MaterialShininess);
lightSpecular += specularFactor * Lights[i].color.rgb;
lightSpecular += att * specularFactor * lightColor.rgb;
break;
}
case LIGHT_POINT:
{
vec3 lightDir = Lights[i].parameters1.xyz - vWorldPos;
float lightDirLength = length(lightDir);
lightDir /= lightDirLength; // Normalisation
vec3 lightPos = Lights[i].parameters1.xyz;
float lightAttenuation = Lights[i].parameters1.w;
float lightInvRadius = Lights[i].parameters2.w;
float att = max(Lights[i].parameters1.w - Lights[i].parameters2.w*lightDirLength, 0.0);
vec3 worldToLight = lightPos - vWorldPos;
float lightDirLength = length(worldToLight);
vec3 lightDir = worldToLight / lightDirLength; // Normalisation
float att = max(lightAttenuation - lightInvRadius * lightDirLength, 0.0);
// Ambient
lightAmbient += att * Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += att * lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculatePointShadowFactor(i, vWorldPos - lightPos, 0.1, 50.0);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
lightDiffuse += att * lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
// Specular
vec3 reflection = reflect(-lightDir, normal);
float specularFactor = max(dot(reflection, eyeVec), 0.0);
specularFactor = pow(specularFactor, MaterialShininess);
lightSpecular += att * specularFactor * Lights[i].color.rgb;
lightSpecular += att * specularFactor * lightColor.rgb;
break;
}
case LIGHT_SPOT:
{
vec3 lightDir = Lights[i].parameters1.xyz - vWorldPos;
float lightDirLength = length(lightDir);
lightDir /= lightDirLength; // Normalisation
vec3 lightPos = Lights[i].parameters1.xyz;
vec3 lightDir = Lights[i].parameters2.xyz;
float lightAttenuation = Lights[i].parameters1.w;
float lightInvRadius = Lights[i].parameters2.w;
float lightInnerAngle = Lights[i].parameters3.x;
float lightOuterAngle = Lights[i].parameters3.y;
vec3 worldToLight = lightPos - vWorldPos;
float lightDistance = length(worldToLight);
worldToLight /= lightDistance; // Normalisation
float att = max(Lights[i].parameters1.w - Lights[i].parameters2.w*lightDirLength, 0.0);
float att = max(lightAttenuation - lightInvRadius * lightDistance, 0.0);
// Ambient
lightAmbient += att * Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += att * lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculateSpotShadowFactor(i);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Modification de l'atténuation pour gérer le spot
float curAngle = dot(Lights[i].parameters2.xyz, -lightDir);
float outerAngle = Lights[i].parameters3.y;
float innerMinusOuterAngle = Lights[i].parameters3.x - outerAngle;
att *= max((curAngle - outerAngle) / innerMinusOuterAngle, 0.0);
float curAngle = dot(lightDir, -worldToLight);
float innerMinusOuterAngle = lightInnerAngle - lightOuterAngle;
att *= max((curAngle - lightOuterAngle) / innerMinusOuterAngle, 0.0);
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
float lambert = max(dot(normal, worldToLight), 0.0);
lightDiffuse += att * lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
// Specular
vec3 reflection = reflect(-lightDir, normal);
vec3 reflection = reflect(-worldToLight, normal);
float specularFactor = max(dot(reflection, eyeVec), 0.0);
specularFactor = pow(specularFactor, MaterialShininess);
lightSpecular += att * specularFactor * Lights[i].color.rgb;
lightSpecular += att * specularFactor * lightColor.rgb;
break;
}
@@ -256,61 +344,110 @@ void main()
{
for (int i = 0; i < 3; ++i)
{
vec4 lightColor = Lights[i].color;
float lightAmbientFactor = Lights[i].factors.x;
float lightDiffuseFactor = Lights[i].factors.y;
switch (Lights[i].type)
{
case LIGHT_DIRECTIONAL:
{
vec3 lightDir = normalize(-Lights[i].parameters1.xyz);
vec3 lightDir = -Lights[i].parameters1.xyz;
// Ambient
lightAmbient += Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
float att = 1.0;
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculateDirectionalShadowFactor(i);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
lightDiffuse += lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
break;
}
case LIGHT_POINT:
{
vec3 lightDir = Lights[i].parameters1.xyz - vWorldPos;
float lightDirLength = length(lightDir);
lightDir /= lightDirLength; // Normalisation
vec3 lightPos = Lights[i].parameters1.xyz;
float lightAttenuation = Lights[i].parameters1.w;
float lightInvRadius = Lights[i].parameters2.w;
float att = max(Lights[i].parameters1.w - Lights[i].parameters2.w*lightDirLength, 0.0);
vec3 worldToLight = lightPos - vWorldPos;
float lightDirLength = length(worldToLight);
vec3 lightDir = worldToLight / lightDirLength; // Normalisation
float att = max(lightAttenuation - lightInvRadius * lightDirLength, 0.0);
// Ambient
lightAmbient += att * Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += att * lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculatePointShadowFactor(i, vWorldPos - lightPos, 0.1, 50.0);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
lightDiffuse += att * lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
break;
}
case LIGHT_SPOT:
{
vec3 lightDir = Lights[i].parameters1.xyz - vWorldPos;
float lightDirLength = length(lightDir);
lightDir /= lightDirLength; // Normalisation
vec3 lightPos = Lights[i].parameters1.xyz;
vec3 lightDir = Lights[i].parameters2.xyz;
float lightAttenuation = Lights[i].parameters1.w;
float lightInvRadius = Lights[i].parameters2.w;
float lightInnerAngle = Lights[i].parameters3.x;
float lightOuterAngle = Lights[i].parameters3.y;
vec3 worldToLight = lightPos - vWorldPos;
float lightDistance = length(worldToLight);
worldToLight /= lightDistance; // Normalisation
float att = max(Lights[i].parameters1.w - Lights[i].parameters2.w*lightDirLength, 0.0);
float att = max(lightAttenuation - lightInvRadius * lightDistance, 0.0);
// Ambient
lightAmbient += att * Lights[i].color.rgb * Lights[i].factors.x * (MaterialAmbient.rgb + SceneAmbient.rgb);
lightAmbient += att * lightColor.rgb * lightAmbientFactor * (MaterialAmbient.rgb + SceneAmbient.rgb);
#if SHADOW_MAPPING
if (Lights[i].shadowMapping)
{
float shadowFactor = CalculateSpotShadowFactor(i);
if (shadowFactor == 0.0)
break;
att *= shadowFactor;
}
#endif
// Modification de l'atténuation pour gérer le spot
float curAngle = dot(Lights[i].parameters2.xyz, -lightDir);
float outerAngle = Lights[i].parameters3.y;
float innerMinusOuterAngle = Lights[i].parameters3.x - outerAngle;
att *= max((curAngle - outerAngle) / innerMinusOuterAngle, 0.0);
float curAngle = dot(lightDir, -worldToLight);
float innerMinusOuterAngle = lightInnerAngle - lightOuterAngle;
att *= max((curAngle - lightOuterAngle) / innerMinusOuterAngle, 0.0);
// Diffuse
float lambert = max(dot(normal, lightDir), 0.0);
float lambert = max(dot(normal, worldToLight), 0.0);
lightDiffuse += att * lambert * Lights[i].color.rgb * Lights[i].factors.y;
lightDiffuse += att * lambert * lightColor.rgb * lightDiffuseFactor;
}
default:
@@ -318,7 +455,7 @@ void main()
}
}
}
lightSpecular *= MaterialSpecular.rgb;
#if SPECULAR_MAPPING
lightSpecular *= texture(MaterialSpecularMap, texCoord).rgb; // Utiliser l'alpha de MaterialSpecular n'aurait aucun sens
@@ -340,3 +477,4 @@ void main()
#endif // LIGHTING
#endif // FLAG_DEFERRED
}

File diff suppressed because one or more lines are too long

View File

@@ -15,6 +15,7 @@ in vec2 VertexTexCoord;
/********************Sortant********************/
out vec4 vColor;
out vec4 vLightSpacePos[3];
out mat3 vLightToWorld;
out vec3 vNormal;
out vec2 vTexCoord;
@@ -23,6 +24,8 @@ out vec3 vWorldPos;
/********************Uniformes********************/
uniform vec3 EyePosition;
uniform mat4 InvViewMatrix;
uniform mat4 LightViewProjMatrix[3];
uniform float VertexDepth;
uniform mat4 ViewProjMatrix;
uniform mat4 WorldMatrix;
@@ -121,6 +124,11 @@ void main()
#endif
#endif
#if SHADOW_MAPPING
for (int i = 0; i < 3; ++i)
vLightSpacePos[i] = LightViewProjMatrix[i] * WorldMatrix * vec4(VertexPosition, 1.0);
#endif
#if TEXTURE_MAPPING
vTexCoord = VertexTexCoord;
#endif

File diff suppressed because one or more lines are too long

View File

@@ -995,6 +995,7 @@ namespace Nz
glUniformMatrix4fv = reinterpret_cast<PFNGLUNIFORMMATRIX4FVPROC>(LoadEntry("glUniformMatrix4fv"));
glUnmapBuffer = reinterpret_cast<PFNGLUNMAPBUFFERPROC>(LoadEntry("glUnmapBuffer"));
glUseProgram = reinterpret_cast<PFNGLUSEPROGRAMPROC>(LoadEntry("glUseProgram"));
glValidateProgram = reinterpret_cast<PFNGLVALIDATEPROGRAMPROC>(LoadEntry("glValidateProgram"));
glVertexAttrib4f = reinterpret_cast<PFNGLVERTEXATTRIB4FPROC>(LoadEntry("glVertexAttrib4f"));
glVertexAttribDivisor = reinterpret_cast<PFNGLVERTEXATTRIBDIVISORPROC>(LoadEntry("glVertexAttribDivisor"));
glVertexAttribPointer = reinterpret_cast<PFNGLVERTEXATTRIBPOINTERPROC>(LoadEntry("glVertexAttribPointer"));
@@ -1684,24 +1685,44 @@ namespace Nz
format->dataFormat = GL_DEPTH_COMPONENT;
format->dataType = GL_UNSIGNED_SHORT;
format->internalFormat = GL_DEPTH_COMPONENT16;
format->swizzle[0] = GL_RED;
format->swizzle[1] = GL_RED;
format->swizzle[2] = GL_RED;
format->swizzle[3] = GL_ONE;
return true;
case PixelFormatType_Depth24:
format->dataFormat = GL_DEPTH_COMPONENT;
format->dataType = GL_UNSIGNED_INT;
format->internalFormat = GL_DEPTH_COMPONENT24;
format->swizzle[0] = GL_RED;
format->swizzle[1] = GL_RED;
format->swizzle[2] = GL_RED;
format->swizzle[3] = GL_ONE;
return true;
case PixelFormatType_Depth24Stencil8:
format->dataFormat = GL_DEPTH_STENCIL;
format->dataType = GL_UNSIGNED_INT_24_8;
format->internalFormat = GL_DEPTH24_STENCIL8;
format->swizzle[0] = GL_RED;
format->swizzle[1] = GL_RED;
format->swizzle[2] = GL_RED;
format->swizzle[3] = GL_GREEN;
return true;
case PixelFormatType_Depth32:
format->dataFormat = GL_DEPTH_COMPONENT;
format->dataType = GL_UNSIGNED_BYTE;
format->internalFormat = GL_DEPTH_COMPONENT32;
format->swizzle[0] = GL_RED;
format->swizzle[1] = GL_RED;
format->swizzle[2] = GL_RED;
format->swizzle[3] = GL_ONE;
return true;
case PixelFormatType_Stencil1:
@@ -2248,12 +2269,14 @@ PFNGLUNIFORMMATRIX4DVPROC glUniformMatrix4dv = nullptr;
PFNGLUNIFORMMATRIX4FVPROC glUniformMatrix4fv = nullptr;
PFNGLUNMAPBUFFERPROC glUnmapBuffer = nullptr;
PFNGLUSEPROGRAMPROC glUseProgram = nullptr;
PFNGLVALIDATEPROGRAMPROC glValidateProgram = nullptr;
PFNGLVERTEXATTRIB4FPROC glVertexAttrib4f = nullptr;
PFNGLVERTEXATTRIBDIVISORPROC glVertexAttribDivisor = nullptr;
PFNGLVERTEXATTRIBPOINTERPROC glVertexAttribPointer = nullptr;
PFNGLVERTEXATTRIBIPOINTERPROC glVertexAttribIPointer = nullptr;
PFNGLVERTEXATTRIBLPOINTERPROC glVertexAttribLPointer = nullptr;
PFNGLVIEWPORTPROC glViewport = nullptr;
#if defined(NAZARA_PLATFORM_WINDOWS)
PFNWGLCHOOSEPIXELFORMATARBPROC wglChoosePixelFormat = nullptr;
PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribs = nullptr;

View File

@@ -156,9 +156,6 @@ namespace Nz
InvalidateSize();
InvalidateTargets();
if (attachmentPoint == AttachmentPoint_Color && !m_impl->userDefinedTargets)
m_impl->colorTargets.push_back(index);
return true;
}
@@ -293,9 +290,6 @@ namespace Nz
InvalidateSize();
InvalidateTargets();
if (attachmentPoint == AttachmentPoint_Color && !m_impl->userDefinedTargets)
m_impl->colorTargets.push_back(index);
return true;
}
@@ -819,6 +813,15 @@ namespace Nz
void RenderTexture::UpdateTargets() const
{
if (!m_impl->userDefinedTargets)
{
m_impl->colorTargets.clear();
unsigned int colorIndex = 0;
for (unsigned int index = attachmentIndex[AttachmentPoint_Color]; index < m_impl->attachments.size(); ++index)
m_impl->colorTargets.push_back(colorIndex++);
}
if (m_impl->colorTargets.empty())
{
m_impl->drawBuffers.resize(1);

View File

@@ -1713,6 +1713,14 @@ namespace Nz
// Et on termine par envoyer nos états au driver
OpenGL::ApplyStates(s_states);
#ifdef NAZARA_DEBUG
if (!s_shader->Validate())
{
NazaraError(Error::GetLastError());
return false;
}
#endif
return true;
}

View File

@@ -747,6 +747,31 @@ namespace Nz
}
}
bool Shader::Validate() const
{
#if NAZARA_RENDERER_SAFE
if (!m_program)
{
NazaraError("Shader is not initialized");
return false;
}
#endif
glValidateProgram(m_program);
GLint success;
glGetProgramiv(m_program, GL_VALIDATE_STATUS, &success);
if (success == GL_TRUE)
return true;
else
{
NazaraError("Failed to validate shader: " + GetLog());
return false;
}
}
unsigned int Shader::GetOpenGLID() const
{
return m_program;

View File

@@ -1306,6 +1306,12 @@ namespace Nz
glTexParameteri(target, GL_TEXTURE_SWIZZLE_A, openGLFormat.swizzle[3]);
}
if (!proxy && PixelFormat::GetType(m_impl->format) == PixelFormatTypeType_Depth)
{
glTexParameteri(target, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(target, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
}
return true;
}

View File

@@ -8,7 +8,7 @@
#define NAZARA_LOADERS_DDS_CONSTANTS_HPP
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Core/Serialization.hpp>
#include <Nazara/Core/SerializationContext.hpp>
#include <Nazara/Utility/Config.hpp>
namespace Nz

View File

@@ -65,7 +65,7 @@ namespace Nz
headerDX10.resourceDimension = D3D10_RESOURCE_DIMENSION_UNKNOWN;
}
if (header.flags & DDSD_WIDTH == 0)
if ((header.flags & DDSD_WIDTH) == 0)
NazaraWarning("Ill-formed DDS file, doesn't have a width flag");
unsigned int width = std::max(header.width, 1U);
@@ -141,7 +141,7 @@ namespace Nz
{
if (header.ddsCaps[1] & DDSCAPS2_CUBEMAP)
{
if (header.ddsCaps[1] & DDSCAPS2_CUBEMAP_ALLFACES != DDSCAPS2_CUBEMAP_ALLFACES)
if ((header.ddsCaps[1] & DDSCAPS2_CUBEMAP_ALLFACES) != DDSCAPS2_CUBEMAP_ALLFACES)
{
NazaraError("Partial cubemap are not yet supported, sorry");
return false;

View File

@@ -9,6 +9,7 @@
#include <Nazara/Math/Algorithm.hpp>
#include <Nazara/Math/Quaternion.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/Formats/MD2Constants.hpp>
@@ -99,7 +100,11 @@ namespace Nz
for (unsigned int i = 0; i < header.num_skins; ++i)
{
stream.Read(skin, 68*sizeof(char));
mesh->SetMaterial(i, baseDir + skin);
ParameterList matData;
matData.SetParameter(MaterialData::FilePath, baseDir + skin);
mesh->SetMaterialData(i, std::move(matData));
}
}
}

View File

@@ -5,6 +5,7 @@
#include <Nazara/Utility/Formats/MD5MeshLoader.hpp>
#include <Nazara/Utility/IndexIterator.hpp>
#include <Nazara/Utility/IndexMapper.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/Formats/MD5MeshParser.hpp>
@@ -41,7 +42,7 @@ namespace Nz
// Pour que le squelette soit correctement aligné, il faut appliquer un quaternion "de correction" aux joints à la base du squelette
Quaternionf rotationQuat = Quaternionf::RotationBetween(Vector3f::UnitX(), Vector3f::Forward()) *
Quaternionf::RotationBetween(Vector3f::UnitZ(), Vector3f::Up());
Quaternionf::RotationBetween(Vector3f::UnitZ(), Vector3f::Up());
String baseDir = stream.GetDirectory();
@@ -189,7 +190,10 @@ namespace Nz
vertexMapper.Unmap();
// Material
mesh->SetMaterial(i, baseDir + md5Mesh.shader);
ParameterList matData;
matData.SetParameter(MaterialData::FilePath, baseDir + md5Mesh.shader);
mesh->SetMaterialData(i, std::move(matData));
// Submesh
SkeletalMeshRef subMesh = SkeletalMesh::New(mesh);
@@ -285,7 +289,10 @@ namespace Nz
mesh->AddSubMesh(subMesh);
// Material
mesh->SetMaterial(i, baseDir + md5Mesh.shader);
ParameterList matData;
matData.SetParameter(MaterialData::FilePath, baseDir + md5Mesh.shader);
mesh->SetMaterialData(i, std::move(matData));
}
if (parameters.center)

View File

@@ -194,6 +194,7 @@ namespace Nz
m_currentLine = m_stream.ReadLine();
m_currentLine = m_currentLine.SubStringTo("//"); // On ignore les commentaires
m_currentLine.Simplify(); // Pour un traitement plus simple
m_currentLine.Trim();
}
while (m_currentLine.IsEmpty());
}

View File

@@ -1,14 +1,13 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// Copyright (C) 2016 Jérôme Leclercq
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/Formats/OBJLoader.hpp>
#include <Nazara/Utility/Formats/OBJLoader.hpp>
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/IndexMapper.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/Formats/MTLParser.hpp>
@@ -17,7 +16,7 @@
#include <limits>
#include <memory>
#include <unordered_map>
#include <Nazara/Graphics/Debug.hpp>
#include <Nazara/Utility/Debug.hpp>
///TODO: N'avoir qu'un seul VertexBuffer communs à tous les meshes
@@ -30,7 +29,7 @@ namespace Nz
return (extension == "obj");
}
Ternary Check(Stream& stream, const ModelParameters& parameters)
Ternary Check(Stream& stream, const MeshParams& parameters)
{
NazaraUnused(stream);
@@ -41,7 +40,7 @@ namespace Nz
return Ternary_Unknown;
}
bool LoadMaterials(Model* model, const String& filePath, const MaterialParams& parameters, const String* materials, const OBJParser::Mesh* meshes, unsigned int meshCount)
bool ParseMTL(Mesh* mesh, const String& filePath, const String* materials, const OBJParser::Mesh* meshes, unsigned int meshCount)
{
File file(filePath);
if (!file.Open(OpenMode_ReadOnly | OpenMode_Text))
@@ -57,7 +56,7 @@ namespace Nz
return false;
}
std::unordered_map<String, MaterialRef> materialCache;
std::unordered_map<String, ParameterList> materialCache;
String baseDir = file.GetDirectory();
for (unsigned int i = 0; i < meshCount; ++i)
{
@@ -72,8 +71,9 @@ namespace Nz
auto it = materialCache.find(matName);
if (it == materialCache.end())
{
MaterialRef material = Material::New();
material->SetShader(parameters.shaderName);
ParameterList data;
data.SetParameter(MaterialData::CustomDefined);
UInt8 alphaValue = static_cast<UInt8>(mtlMat->alpha*255.f);
@@ -84,54 +84,40 @@ namespace Nz
diffuseColor.a = alphaValue;
specularColor.a = alphaValue;
material->SetAmbientColor(ambientColor);
material->SetDiffuseColor(diffuseColor);
material->SetSpecularColor(specularColor);
material->SetShininess(mtlMat->shininess);
data.SetParameter(MaterialData::AmbientColor, ambientColor);
data.SetParameter(MaterialData::DiffuseColor, diffuseColor);
data.SetParameter(MaterialData::Shininess, mtlMat->shininess);
data.SetParameter(MaterialData::SpecularColor, specularColor);
bool isTranslucent = (alphaValue != 255);
if (!mtlMat->alphaMap.IsEmpty())
data.SetParameter(MaterialData::AlphaTexturePath, baseDir + mtlMat->alphaMap);
if (parameters.loadAlphaMap && !mtlMat->alphaMap.IsEmpty())
if (!mtlMat->diffuseMap.IsEmpty())
data.SetParameter(MaterialData::DiffuseTexturePath, baseDir + mtlMat->diffuseMap);
if (!mtlMat->specularMap.IsEmpty())
data.SetParameter(MaterialData::SpecularTexturePath, baseDir + mtlMat->specularMap);
// If we either have an alpha value or an alpha map, let's configure the material for transparency
if (alphaValue != 255 || !mtlMat->alphaMap.IsEmpty())
{
if (material->SetAlphaMap(baseDir + mtlMat->alphaMap))
isTranslucent = true; // Une alpha map indique de la transparence
else
NazaraWarning("Failed to load alpha map (" + mtlMat->alphaMap + ')');
// Some default settings
data.SetParameter(MaterialData::Blending, true);
data.SetParameter(MaterialData::DepthWrite, true);
data.SetParameter(MaterialData::DstBlend, static_cast<int>(BlendFunc_InvSrcAlpha));
data.SetParameter(MaterialData::SrcBlend, static_cast<int>(BlendFunc_SrcAlpha));
}
if (parameters.loadDiffuseMap && !mtlMat->diffuseMap.IsEmpty())
{
if (!material->SetDiffuseMap(baseDir + mtlMat->diffuseMap))
NazaraWarning("Failed to load diffuse map (" + mtlMat->diffuseMap + ')');
}
if (parameters.loadSpecularMap && !mtlMat->specularMap.IsEmpty())
{
if (!material->SetSpecularMap(baseDir + mtlMat->specularMap))
NazaraWarning("Failed to load specular map (" + mtlMat->specularMap + ')');
}
// Si nous avons une alpha map ou des couleurs transparentes,
// nous devons configurer le matériau pour accepter la transparence au mieux
if (isTranslucent)
{
// On paramètre le matériau pour accepter la transparence au mieux
material->Enable(RendererParameter_Blend, true);
material->Enable(RendererParameter_DepthWrite, false);
material->SetDstBlend(BlendFunc_InvSrcAlpha);
material->SetSrcBlend(BlendFunc_SrcAlpha);
}
it = materialCache.emplace(matName, std::move(material)).first;
it = materialCache.emplace(matName, std::move(data)).first;
}
model->SetMaterial(meshes[i].material, it->second);
mesh->SetMaterialData(meshes[i].material, it->second);
}
return true;
}
bool Load(Model* model, Stream& stream, const ModelParameters& parameters)
bool Load(Mesh* mesh, Stream& stream, const MeshParams& parameters)
{
int reservedVertexCount;
if (!parameters.custom.GetIntegerParameter("NativeOBJLoader_VertexCount", &reservedVertexCount))
@@ -144,12 +130,7 @@ namespace Nz
return false;
}
MeshRef mesh = Mesh::New();
if (!mesh->CreateStatic()) // Ne devrait jamais échouer
{
NazaraInternalError("Failed to create mesh");
return false;
}
mesh->CreateStatic();
const String* materials = parser.GetMaterials();
const Vector4f* positions = parser.GetPositions();
@@ -160,8 +141,8 @@ namespace Nz
unsigned int meshCount = parser.GetMeshCount();
NazaraAssert(materials != nullptr && positions != nullptr && normals != nullptr &&
texCoords != nullptr && meshes != nullptr && meshCount > 0,
"Invalid OBJParser output");
texCoords != nullptr && meshes != nullptr && meshCount > 0,
"Invalid OBJParser output");
// Un conteneur temporaire pour contenir les indices de face avant triangulation
std::vector<unsigned int> faceIndices(3); // Comme il y aura au moins trois sommets
@@ -197,8 +178,8 @@ namespace Nz
bool operator()(const OBJParser::FaceVertex& lhs, const OBJParser::FaceVertex& rhs) const
{
return lhs.normal == rhs.normal &&
lhs.position == rhs.position &&
lhs.texCoord == rhs.texCoord;
lhs.position == rhs.position &&
lhs.texCoord == rhs.texCoord;
}
};
@@ -230,8 +211,8 @@ namespace Nz
}
// Création des buffers
IndexBufferRef indexBuffer = IndexBuffer::New(vertexCount > std::numeric_limits<UInt16>::max(), indices.size(), parameters.mesh.storage, BufferUsage_Static);
VertexBufferRef vertexBuffer = VertexBuffer::New(VertexDeclaration::Get(VertexLayout_XYZ_Normal_UV_Tangent), vertexCount, parameters.mesh.storage, BufferUsage_Static);
IndexBufferRef indexBuffer = IndexBuffer::New(vertexCount > std::numeric_limits<UInt16>::max(), indices.size(), parameters.storage, BufferUsage_Static);
VertexBufferRef vertexBuffer = VertexBuffer::New(VertexDeclaration::Get(VertexLayout_XYZ_Normal_UV_Tangent), vertexCount, parameters.storage, BufferUsage_Static);
// Remplissage des indices
IndexMapper indexMapper(indexBuffer, BufferAccess_WriteOnly);
@@ -254,7 +235,7 @@ namespace Nz
const Vector4f& vec = positions[vertexIndices.position];
vertex.position.Set(vec.x, vec.y, vec.z);
vertex.position *= parameters.mesh.scale/vec.w;
vertex.position *= parameters.scale/vec.w;
if (vertexIndices.normal >= 0)
vertex.normal = normals[vertexIndices.normal];
@@ -264,7 +245,7 @@ namespace Nz
if (vertexIndices.texCoord >= 0)
{
const Vector3f& uvw = texCoords[vertexIndices.texCoord];
vertex.uv.Set(uvw.x, (parameters.mesh.flipUVs) ? 1.f - uvw.y : uvw.y); // Inversion des UVs si demandé
vertex.uv.Set(uvw.x, (parameters.flipUVs) ? 1.f - uvw.y : uvw.y); // Inversion des UVs si demandé
}
else
hasTexCoords = false;
@@ -279,7 +260,7 @@ namespace Nz
continue;
}
if (parameters.mesh.optimizeIndexBuffers)
if (parameters.optimizeIndexBuffers)
indexBuffer->Optimize();
subMesh->GenerateAABB();
@@ -299,17 +280,15 @@ namespace Nz
}
mesh->SetMaterialCount(parser.GetMaterialCount());
if (parameters.mesh.center)
if (parameters.center)
mesh->Recenter();
model->SetMesh(mesh);
// On charge les matériaux si demandé
String mtlLib = parser.GetMtlLib();
if (parameters.loadMaterials && !mtlLib.IsEmpty())
if (!mtlLib.IsEmpty())
{
ErrorFlags flags(ErrorFlag_ThrowExceptionDisabled);
LoadMaterials(model, stream.GetDirectory() + mtlLib, parameters.material, materials, meshes, meshCount);
ParseMTL(mesh, stream.GetDirectory() + mtlLib, materials, meshes, meshCount);
}
return true;
@@ -320,12 +299,12 @@ namespace Nz
{
void RegisterOBJ()
{
ModelLoader::RegisterLoader(IsSupported, Check, Load);
MeshLoader::RegisterLoader(IsSupported, Check, Load);
}
void UnregisterOBJ()
{
ModelLoader::UnregisterLoader(IsSupported, Check, Load);
MeshLoader::UnregisterLoader(IsSupported, Check, Load);
}
}
}

View File

@@ -52,11 +52,11 @@ namespace Nz
{
MeshImpl()
{
materials.resize(1); // Un matériau par défaut
materialData.resize(1); // Un matériau par défaut
}
std::unordered_map<String, unsigned int> subMeshMap;
std::vector<String> materials;
std::vector<ParameterList> materialData;
std::vector<SubMeshRef> subMeshes;
AnimationType animationType;
Boxf aabb;
@@ -75,93 +75,36 @@ namespace Nz
void Mesh::AddSubMesh(SubMesh* subMesh)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(subMesh, "Invalid submesh");
NazaraAssert(subMesh->GetAnimationType() == m_impl->animationType, "Submesh animation type doesn't match mesh animation type");
if (!subMesh)
{
NazaraError("Invalid submesh");
return;
}
if (subMesh->GetAnimationType() != m_impl->animationType)
{
NazaraError("Submesh animation type must match mesh animation type");
return;
}
#endif
m_impl->aabbUpdated = false; // On invalide l'AABB
m_impl->subMeshes.push_back(subMesh);
InvalidateAABB();
}
void Mesh::AddSubMesh(const String& identifier, SubMesh* subMesh)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
if (identifier.IsEmpty())
{
NazaraError("Identifier is empty");
return;
}
auto it = m_impl->subMeshMap.find(identifier);
if (it != m_impl->subMeshMap.end())
{
NazaraError("SubMesh identifier \"" + identifier + "\" is already used");
return;
}
if (!subMesh)
{
NazaraError("Invalid submesh");
return;
}
if (m_impl->animationType != subMesh->GetAnimationType())
{
NazaraError("Submesh animation type must match mesh animation type");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(!identifier.IsEmpty(), "Identifier is empty");
NazaraAssert(m_impl->subMeshMap.find(identifier) == m_impl->subMeshMap.end(), "SubMesh identifier \"" + identifier + "\" is already in use");
NazaraAssert(subMesh, "Invalid submesh");
NazaraAssert(subMesh->GetAnimationType() == m_impl->animationType, "Submesh animation type doesn't match mesh animation type");
int index = m_impl->subMeshes.size();
m_impl->aabbUpdated = false; // On invalide l'AABB
m_impl->subMeshes.push_back(subMesh);
m_impl->subMeshMap[identifier] = index;
InvalidateAABB();
}
SubMesh* Mesh::BuildSubMesh(const Primitive& primitive, const MeshParams& params)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return nullptr;
}
if (m_impl->animationType != AnimationType_Static)
{
NazaraError("Mesh must be static");
return nullptr;
}
if (!params.IsValid())
{
NazaraError("Parameters must be valid");
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Static, "Submesh building only works for static meshes");
NazaraAssert(params.IsValid(), "Invalid parameters");
Boxf aabb;
IndexBufferRef indexBuffer;
@@ -333,17 +276,7 @@ namespace Nz
void Mesh::BuildSubMeshes(const PrimitiveList& list, const MeshParams& params)
{
unsigned int primitiveCount = list.GetSize();
#if NAZARA_UTILITY_SAFE
if (primitiveCount == 0)
{
NazaraError("PrimitiveList must have at least one primitive");
return;
}
#endif
for (unsigned int i = 0; i < primitiveCount; ++i)
for (unsigned int i = 0; i < list.GetSize(); ++i)
BuildSubMesh(list.GetPrimitive(i), params);
}
@@ -351,18 +284,17 @@ namespace Nz
{
Destroy();
m_impl = new MeshImpl;
m_impl->animationType = AnimationType_Skeletal;
m_impl->jointCount = jointCount;
if (!m_impl->skeleton.Create(jointCount))
std::unique_ptr<MeshImpl> impl(new MeshImpl);
impl->animationType = AnimationType_Skeletal;
impl->jointCount = jointCount;
if (!impl->skeleton.Create(jointCount))
{
delete m_impl;
m_impl = nullptr;
NazaraError("Failed to create skeleton");
return false;
}
m_impl = impl.release();
return true;
}
@@ -389,13 +321,7 @@ namespace Nz
void Mesh::GenerateNormals()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
for (SubMesh* subMesh : m_impl->subMeshes)
subMesh->GenerateNormals();
@@ -403,13 +329,7 @@ namespace Nz
void Mesh::GenerateNormalsAndTangents()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
for (SubMesh* subMesh : m_impl->subMeshes)
subMesh->GenerateNormalsAndTangents();
@@ -417,13 +337,7 @@ namespace Nz
void Mesh::GenerateTangents()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
for (SubMesh* subMesh : m_impl->subMeshes)
subMesh->GenerateTangents();
@@ -431,15 +345,7 @@ namespace Nz
const Boxf& Mesh::GetAABB() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
static Boxf dummy;
return dummy;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
if (!m_impl->aabbUpdated)
{
@@ -461,248 +367,121 @@ namespace Nz
String Mesh::GetAnimation() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return String();
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->animationPath;
}
AnimationType Mesh::GetAnimationType() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return AnimationType_Static;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->animationType;
}
unsigned int Mesh::GetJointCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return 0;
}
if (m_impl->animationType != AnimationType_Skeletal)
{
NazaraError("Mesh's animation type is not skeletal");
return 0;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Skeletal, "Mesh is not skeletal");
return m_impl->jointCount;
}
String Mesh::GetMaterial(unsigned int index) const
ParameterList& Mesh::GetMaterialData(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return String();
}
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(index < m_impl->materialData.size(), "Material index out of range");
if (index >= m_impl->materials.size())
{
NazaraError("Material index out of range (" + String::Number(index) + " >= " + String::Number(m_impl->materials.size()) + ')');
return String();
}
#endif
return m_impl->materialData[index];
}
return m_impl->materials[index];
const ParameterList& Mesh::GetMaterialData(unsigned int index) const
{
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(index < m_impl->materialData.size(), "Material index out of range");
return m_impl->materialData[index];
}
unsigned int Mesh::GetMaterialCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return 0;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->materials.size();
return m_impl->materialData.size();
}
Skeleton* Mesh::GetSkeleton()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (m_impl->animationType != AnimationType_Skeletal)
{
NazaraError("Mesh's animation type is not skeletal");
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Skeletal, "Mesh is not skeletal");
return &m_impl->skeleton;
}
const Skeleton* Mesh::GetSkeleton() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Animation not created");
return nullptr;
}
if (m_impl->animationType != AnimationType_Skeletal)
{
NazaraError("Mesh's animation type is not skeletal");
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Skeletal, "Mesh is not skeletal");
return &m_impl->skeleton;
}
SubMesh* Mesh::GetSubMesh(const String& identifier)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
auto it = m_impl->subMeshMap.find(identifier);
#if NAZARA_UTILITY_SAFE
if (it == m_impl->subMeshMap.end())
{
NazaraError("SubMesh not found");
return nullptr;
}
#endif
NazaraAssert(it != m_impl->subMeshMap.end(), "SubMesh " + identifier + " not found");
return m_impl->subMeshes[it->second];
}
SubMesh* Mesh::GetSubMesh(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return nullptr;
}
if (index >= m_impl->subMeshes.size())
{
NazaraError("SubMesh index out of range (" + String::Number(index) + " >= " + String::Number(m_impl->subMeshes.size()) + ')');
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(index < m_impl->subMeshes.size(), "Submesh index out of range");
return m_impl->subMeshes[index];
}
const SubMesh* Mesh::GetSubMesh(const String& identifier) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
auto it = m_impl->subMeshMap.find(identifier);
#if NAZARA_UTILITY_SAFE
if (it == m_impl->subMeshMap.end())
{
NazaraError("SubMesh not found");
return nullptr;
}
#endif
NazaraAssert(it != m_impl->subMeshMap.end(), "SubMesh " + identifier + " not found");
return m_impl->subMeshes[it->second];
}
const SubMesh* Mesh::GetSubMesh(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return nullptr;
}
if (index >= m_impl->subMeshes.size())
{
NazaraError("SubMesh index out of range (" + String::Number(index) + " >= " + String::Number(m_impl->subMeshes.size()) + ')');
return nullptr;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(index < m_impl->subMeshes.size(), "Submesh index out of range");
return m_impl->subMeshes[index];
}
unsigned int Mesh::GetSubMeshCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return 0;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->subMeshes.size();
}
int Mesh::GetSubMeshIndex(const String& identifier) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return -1;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
auto it = m_impl->subMeshMap.find(identifier);
#if NAZARA_UTILITY_SAFE
if (it == m_impl->subMeshMap.end())
{
NazaraError("SubMesh not found");
return -1;
}
#endif
NazaraAssert(it != m_impl->subMeshMap.end(), "SubMesh " + identifier + " not found");
return it->second;
}
unsigned int Mesh::GetTriangleCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return 0;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
unsigned int triangleCount = 0;
for (SubMesh* subMesh : m_impl->subMeshes)
@@ -713,13 +492,7 @@ namespace Nz
unsigned int Mesh::GetVertexCount() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return 0;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
unsigned int vertexCount = 0;
for (SubMesh* subMesh : m_impl->subMeshes)
@@ -730,52 +503,28 @@ namespace Nz
void Mesh::InvalidateAABB() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
m_impl->aabbUpdated = false;
}
bool Mesh::HasSubMesh(const String& identifier) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return false;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->subMeshMap.find(identifier) != m_impl->subMeshMap.end();
}
bool Mesh::HasSubMesh(unsigned int index) const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return false;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return index < m_impl->subMeshes.size();
}
bool Mesh::IsAnimable() const
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return false;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
return m_impl->animationType != AnimationType_Static;
}
@@ -802,21 +551,10 @@ namespace Nz
void Mesh::Recenter()
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Static, "Mesh is not static");
if (m_impl->animationType != AnimationType_Static)
{
NazaraError("Mesh must be static");
return;
}
#endif
// Le centre de notre mesh est le centre de l'AABB *globale*
// The center of our mesh is the center of our *global* AABB
Vector3f center = GetAABB().GetCenter();
for (SubMesh* subMesh : m_impl->subMeshes)
@@ -833,119 +571,62 @@ namespace Nz
vertices++;
}
// l'AABB ne change pas de dimensions mais seulement de position, appliquons-lui le même procédé
// Our AABB doesn't change shape, only position
Boxf aabb = staticMesh->GetAABB();
aabb.Translate(-center);
staticMesh->SetAABB(aabb);
}
// Il ne faut pas oublier d'invalider notre AABB
m_impl->aabbUpdated = false;
InvalidateAABB();
}
void Mesh::RemoveSubMesh(const String& identifier)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
auto it = m_impl->subMeshMap.find(identifier);
if (it == m_impl->subMeshMap.end())
{
NazaraError("SubMesh not found");
return;
}
unsigned int index = it->second;
#else
unsigned int index = m_impl->subMeshMap[identifier];
#endif
unsigned int index = GetSubMeshIndex(identifier);
// On déplace l'itérateur du début d'une distance de x
auto it2 = m_impl->subMeshes.begin();
std::advance(it2, index);
m_impl->subMeshes.erase(it2);
m_impl->aabbUpdated = false; // On invalide l'AABB
InvalidateAABB();
}
void Mesh::RemoveSubMesh(unsigned int index)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
if (index >= m_impl->subMeshes.size())
{
NazaraError("SubMesh index out of range (" + String::Number(index) + " >= " + String::Number(m_impl->subMeshes.size()) + ')');
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(index < m_impl->subMeshes.size(), "Submesh index out of range");
// On déplace l'itérateur du début de x
auto it = m_impl->subMeshes.begin();
std::advance(it, index);
m_impl->subMeshes.erase(it);
m_impl->aabbUpdated = false; // On invalide l'AABB
InvalidateAABB();
}
void Mesh::SetAnimation(const String& animationPath)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
#endif
NazaraAssert(m_impl, "Mesh should be created first");
m_impl->animationPath = animationPath;
}
void Mesh::SetMaterial(unsigned int matIndex, const String& materialPath)
void Mesh::SetMaterialData(unsigned int matIndex, ParameterList data)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(matIndex < m_impl->materialData.size(), "Material index out of range");
if (matIndex >= m_impl->materials.size())
{
NazaraError("Material index out of range (" + String::Number(matIndex) + " >= " + String::Number(m_impl->materials.size()) + ')');
return;
}
#endif
m_impl->materials[matIndex] = materialPath;
m_impl->materialData[matIndex] = std::move(data);
}
void Mesh::SetMaterialCount(unsigned int matCount)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(matCount > 0, "A mesh should have at least a material");
if (matCount == 0)
{
NazaraError("A mesh should have at least a material");
return;
}
#endif
m_impl->materials.resize(matCount);
m_impl->materialData.resize(matCount);
#ifdef NAZARA_DEBUG
for (SubMesh* subMesh : m_impl->subMeshes)
@@ -953,7 +634,7 @@ namespace Nz
unsigned int matIndex = subMesh->GetMaterialIndex();
if (matIndex >= matCount)
{
subMesh->SetMaterialIndex(0); // Pour empêcher un crash
subMesh->SetMaterialIndex(0); // To prevent a crash
NazaraWarning("SubMesh " + String::Pointer(subMesh) + " material index is over mesh new material count (" + String::Number(matIndex) + " >= " + String::Number(matCount) + "), setting it to first material");
}
}
@@ -962,22 +643,8 @@ namespace Nz
void Mesh::Transform(const Matrix4f& matrix)
{
#if NAZARA_UTILITY_SAFE
if (!m_impl)
{
NazaraError("Mesh not created");
return;
}
if (m_impl->animationType != AnimationType_Static)
{
NazaraError("Mesh must be static");
return;
}
#endif
if (matrix.IsIdentity())
return;
NazaraAssert(m_impl, "Mesh should be created first");
NazaraAssert(m_impl->animationType == AnimationType_Static, "Mesh is not static");
for (SubMesh* subMesh : m_impl->subMeshes)
{
@@ -1000,8 +667,7 @@ namespace Nz
staticMesh->SetAABB(aabb);
}
// Il ne faut pas oublier d'invalider notre AABB
m_impl->aabbUpdated = false;
InvalidateAABB();
}
bool Mesh::Initialize()

View File

@@ -49,7 +49,7 @@ namespace Nz
ClearGlyphs();
}
const Rectui& SimpleTextDrawer::GetBounds() const
const Recti& SimpleTextDrawer::GetBounds() const
{
if (!m_glyphUpdated)
UpdateGlyphs();

View File

@@ -209,5 +209,5 @@ namespace Nz
void SubMesh::SetMaterialIndex(unsigned int matIndex)
{
m_matIndex = matIndex;
}
}
}

View File

@@ -25,6 +25,7 @@
#include <Nazara/Utility/Formats/MD2Loader.hpp>
#include <Nazara/Utility/Formats/MD5AnimLoader.hpp>
#include <Nazara/Utility/Formats/MD5MeshLoader.hpp>
#include <Nazara/Utility/Formats/OBJLoader.hpp>
#include <Nazara/Utility/Formats/PCXLoader.hpp>
#include <Nazara/Utility/Formats/STBLoader.hpp>
#include <Nazara/Utility/Formats/STBSaver.hpp>
@@ -114,7 +115,7 @@ namespace Nz
Loaders::RegisterFreeType();
// Image
Loaders::RegisterDDSLoader(); // Generic loader (STB)
Loaders::RegisterDDSLoader(); // DDS Loader (DirectX format)
Loaders::RegisterSTBLoader(); // Generic loader (STB)
Loaders::RegisterSTBSaver(); // Generic saver (STB)
@@ -122,6 +123,9 @@ namespace Nz
// Animation
Loaders::RegisterMD5Anim(); // Loader de fichiers .md5anim (v10)
// Mesh (text)
Loaders::RegisterOBJ();
// Mesh
Loaders::RegisterMD2(); // Loader de fichiers .md2 (v8)
Loaders::RegisterMD5Mesh(); // Loader de fichiers .md5mesh (v10)
@@ -158,6 +162,7 @@ namespace Nz
Loaders::UnregisterMD2();
Loaders::UnregisterMD5Anim();
Loaders::UnregisterMD5Mesh();
Loaders::UnregisterOBJ();
Loaders::UnregisterPCX();
Loaders::UnregisterSTBLoader();
Loaders::UnregisterSTBSaver();