Added Deferred Shading

Former-commit-id: 926022d6306144e2f87cd293291928bda44c7a87
This commit is contained in:
Lynix
2013-10-22 12:54:05 +02:00
parent d363e29e15
commit b7b65d7119
28 changed files with 2355 additions and 0 deletions

View File

@@ -0,0 +1,334 @@
// Copyright (C) 2013 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/DeferredRenderQueue.hpp>
#include <Nazara/Graphics/Camera.hpp>
#include <Nazara/Graphics/ForwardRenderQueue.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Renderer/Material.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Graphics/Debug.hpp>
namespace
{
enum ResourceType
{
ResourceType_Material,
ResourceType_SkeletalMesh,
ResourceType_StaticMesh
};
}
NzDeferredRenderQueue::NzDeferredRenderQueue(NzForwardRenderQueue* forwardQueue) :
m_forwardQueue(forwardQueue)
{
}
NzDeferredRenderQueue::~NzDeferredRenderQueue()
{
Clear(true);
}
void NzDeferredRenderQueue::AddDrawable(const NzDrawable* drawable)
{
m_forwardQueue->AddDrawable(drawable);
}
void NzDeferredRenderQueue::AddLight(const NzLight* light)
{
#if NAZARA_GRAPHICS_SAFE
if (!light)
{
NazaraError("Invalid light");
return;
}
#endif
switch (light->GetLightType())
{
case nzLightType_Directional:
directionalLights.push_back(light);
break;
case nzLightType_Point:
pointLights.push_back(light);
break;
case nzLightType_Spot:
spotLights.push_back(light);
break;
}
m_forwardQueue->AddLight(light);
}
void NzDeferredRenderQueue::AddModel(const NzModel* model)
{
#if NAZARA_GRAPHICS_SAFE
if (!model)
{
NazaraError("Invalid model");
return;
}
if (!model->IsDrawable())
{
NazaraError("Model is not drawable");
return;
}
#endif
const NzMatrix4f& transformMatrix = model->GetTransformMatrix();
NzMesh* mesh = model->GetMesh();
unsigned int submeshCount = mesh->GetSubMeshCount();
for (unsigned int i = 0; i < submeshCount; ++i)
{
NzSubMesh* subMesh = mesh->GetSubMesh(i);
NzMaterial* material = model->GetMaterial(subMesh->GetMaterialIndex());
AddSubMesh(material, subMesh, transformMatrix);
}
}
void NzDeferredRenderQueue::AddSprite(const NzSprite* sprite)
{
#if NAZARA_GRAPHICS_SAFE
if (!sprite)
{
NazaraError("Invalid sprite");
return;
}
if (!sprite->IsDrawable())
{
NazaraError("Sprite is not drawable");
return;
}
#endif
NzMaterial* material = sprite->GetMaterial();
if (material->IsEnabled(nzRendererParameter_Blend))
m_forwardQueue->AddSprite(sprite);
else
sprites[material].push_back(sprite);
}
void NzDeferredRenderQueue::AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix)
{
switch (subMesh->GetAnimationType())
{
case nzAnimationType_Skeletal:
{
///TODO
/*
** Il y a ici deux choses importantes à gérer:
** -Pour commencer, la mise en cache de std::vector suffisamment grands pour contenir le résultat du skinning
** l'objectif ici est d'éviter une allocation à chaque frame, donc de réutiliser un tableau existant
** Note: Il faudrait évaluer aussi la possibilité de conserver le buffer d'une frame à l'autre.
** Ceci permettant de ne pas skinner inutilement ce qui ne bouge pas, ou de skinner partiellement un mesh.
** Il faut cependant voir où stocker ce set de buffers, qui doit être communs à toutes les RQ d'une même scène.
**
** -Ensuite, la possibilité de regrouper les modèles skinnés identiques, une centaine de soldats marchant au pas
** ne devrait requérir qu'un skinning.
*/
NazaraError("Skeletal mesh not supported yet, sorry");
break;
}
case nzAnimationType_Static:
{
if (material->IsEnabled(nzRendererParameter_Blend))
m_forwardQueue->AddSubMesh(material, subMesh, transformMatrix);
else
{
const NzStaticMesh* staticMesh = static_cast<const NzStaticMesh*>(subMesh);
auto pair = opaqueModels.insert(std::make_pair(material, BatchedModelContainer::mapped_type()));
if (pair.second)
material->AddResourceListener(this, ResourceType_Material);
bool& used = std::get<0>(pair.first->second);
bool& enableInstancing = std::get<1>(pair.first->second);
used = true;
auto& meshMap = std::get<3>(pair.first->second);
auto pair2 = meshMap.insert(std::make_pair(staticMesh, BatchedStaticMeshContainer::mapped_type()));
if (pair2.second)
staticMesh->AddResourceListener(this, ResourceType_StaticMesh);
std::vector<StaticData>& staticDataContainer = pair2.first->second;
unsigned int instanceCount = staticDataContainer.size() + 1;
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instanceCount >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau
staticDataContainer.resize(instanceCount);
StaticData& data = staticDataContainer.back();
data.transformMatrix = transformMatrix;
}
break;
}
}
}
void NzDeferredRenderQueue::Clear(bool fully)
{
directionalLights.clear();
pointLights.clear();
spotLights.clear();
if (fully)
{
for (auto& matIt : opaqueModels)
{
const NzMaterial* material = matIt.first;
material->RemoveResourceListener(this);
BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second);
for (auto& meshIt : skeletalContainer)
{
const NzSkeletalMesh* skeletalMesh = meshIt.first;
skeletalMesh->RemoveResourceListener(this);
}
BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second);
for (auto& meshIt : staticContainer)
{
const NzStaticMesh* staticMesh = meshIt.first;
staticMesh->RemoveResourceListener(this);
}
}
opaqueModels.clear();
sprites.clear();
}
m_forwardQueue->Clear(fully);
}
bool NzDeferredRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_Material:
opaqueModels.erase(static_cast<const NzMaterial*>(resource));
break;
case ResourceType_SkeletalMesh:
{
for (auto& pair : opaqueModels)
std::get<2>(pair.second).erase(static_cast<const NzSkeletalMesh*>(resource));
break;
}
case ResourceType_StaticMesh:
{
for (auto& pair : opaqueModels)
std::get<3>(pair.second).erase(static_cast<const NzStaticMesh*>(resource));
break;
}
}
return false; // Nous ne voulons plus recevoir d'évènement de cette ressource
}
void NzDeferredRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
OnResourceDestroy(resource, index);
}
bool NzDeferredRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
nzUInt32 possibleFlags[] = {
nzShaderFlags_Deferred,
nzShaderFlags_Deferred | nzShaderFlags_Instancing
};
for (nzUInt32 flag : possibleFlags)
{
const NzShaderProgram* program1 = mat1->GetShaderProgram(nzShaderTarget_Model, flag);
const NzShaderProgram* program2 = mat2->GetShaderProgram(nzShaderTarget_Model, flag);
if (program1 != program2)
return program1 < program2;
}
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzDeferredRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
nzUInt32 possibleFlags[] = {
nzShaderFlags_Deferred
};
for (nzUInt32 flag : possibleFlags)
{
const NzShaderProgram* program1 = mat1->GetShaderProgram(nzShaderTarget_Model, flag);
const NzShaderProgram* program2 = mat2->GetShaderProgram(nzShaderTarget_Model, flag);
if (program1 != program2)
return program1 < program2;
}
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzDeferredRenderQueue::BatchedSkeletalMeshComparator::operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer2 < buffer2;
}
bool NzDeferredRenderQueue::BatchedStaticMeshComparator::operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2)
{
const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer();
const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr;
const NzIndexBuffer* iBuffer2 = subMesh2->GetIndexBuffer();
const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr;
if (buffer1 == buffer2)
{
buffer1 = subMesh1->GetVertexBuffer()->GetBuffer();
buffer2 = subMesh2->GetVertexBuffer()->GetBuffer();
if (buffer1 == buffer2)
return subMesh1 < subMesh2;
else
return buffer1 < buffer2;
}
else
return buffer1 < buffer2;
}