Added linear interpolation (Lerp) to math module

Former-commit-id: 5920e21f25d42701a1895734eca492fdf5351669
This commit is contained in:
Lynix
2012-10-08 14:45:29 +02:00
parent 737f2a70bd
commit cfd54b859d
12 changed files with 141 additions and 49 deletions

View File

@@ -365,32 +365,48 @@ NzQuaternion<T> NzQuaternion<T>::Identity()
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
NzQuaternion<T> NzQuaternion<T>::Lerp(const NzQuaternion& from, const NzQuaternion& to, T interpolation)
{
if (interp <= F(0.0))
return quatA;
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NzString::Number(interpolation) + ')');
return Zero();
}
#endif
if (interp >= F(1.0))
return quatB;
return from + interpolation*(to-from);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& from, const NzQuaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NzString::Number(interpolation) + ')');
return Zero();
}
#endif
NzQuaternion q;
T cosOmega = quatA.DotProduct(quatB);
T cosOmega = from.DotProduct(to);
if (cosOmega < F(0.0))
{
// On inverse tout
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
q.Set(-to.w, -to.x, -to.y, -to.z);
cosOmega = -cosOmega;
}
else
q.Set(quatB);
q.Set(to);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Interpolation linéaire pour éviter une division par zéro
k0 = F(1.0) - interp;
k1 = interp;
k0 = F(1.0) - interpolation;
k1 = interpolation;
}
else
{
@@ -400,11 +416,11 @@ NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuater
// Pour éviter deux divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
k1 = std::sin(interp*omega) * sinOmega;
k0 = std::sin((F(1.0) - interpolation) * omega) * sinOmega;
k1 = std::sin(interpolation*omega) * sinOmega;
}
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
NzQuaternion result(k0 * from.w, k0 * from.x, k0 * from.y, k0 * from.z);
return result += q*k1;
}