Switch from Nz prefix to namespace Nz

What a huge commit


Former-commit-id: 38ac5eebf70adc1180f571f6006192d28fb99897
This commit is contained in:
Lynix
2015-09-25 19:20:05 +02:00
parent c214251ecf
commit df8da275c4
609 changed files with 68265 additions and 66534 deletions

View File

@@ -16,244 +16,247 @@
#include <memory>
#include <Nazara/Graphics/Debug.hpp>
NzDeferredGeometryPass::NzDeferredGeometryPass()
namespace Nz
{
m_clearShader = NzShaderLibrary::Get("DeferredGBufferClear");
m_clearStates.parameters[nzRendererParameter_DepthBuffer] = true;
m_clearStates.parameters[nzRendererParameter_FaceCulling] = true;
m_clearStates.parameters[nzRendererParameter_StencilTest] = true;
m_clearStates.depthFunc = nzRendererComparison_Always;
m_clearStates.frontFace.stencilCompare = nzRendererComparison_Always;
m_clearStates.frontFace.stencilPass = nzStencilOperation_Zero;
}
NzDeferredGeometryPass::~NzDeferredGeometryPass() = default;
bool NzDeferredGeometryPass::Process(const NzSceneData& sceneData, unsigned int firstWorkTexture, unsigned secondWorkTexture) const
{
NazaraAssert(sceneData.viewer, "Invalid viewer");
NazaraUnused(firstWorkTexture);
NazaraUnused(secondWorkTexture);
bool instancingEnabled = m_deferredTechnique->IsInstancingEnabled();
m_GBufferRTT->SetColorTargets({0, 1, 2}); // G-Buffer
NzRenderer::SetTarget(m_GBufferRTT);
NzRenderer::SetViewport(NzRecti(0, 0, m_dimensions.x, m_dimensions.y));
NzRenderer::SetRenderStates(m_clearStates);
NzRenderer::SetShader(m_clearShader);
NzRenderer::DrawFullscreenQuad();
NzRenderer::SetMatrix(nzMatrixType_Projection, sceneData.viewer->GetProjectionMatrix());
NzRenderer::SetMatrix(nzMatrixType_View, sceneData.viewer->GetViewMatrix());
const NzShader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
for (auto& matIt : m_renderQueue->opaqueModels)
DeferredGeometryPass::DeferredGeometryPass()
{
auto& matEntry = matIt.second;
m_clearShader = ShaderLibrary::Get("DeferredGBufferClear");
m_clearStates.parameters[RendererParameter_DepthBuffer] = true;
m_clearStates.parameters[RendererParameter_FaceCulling] = true;
m_clearStates.parameters[RendererParameter_StencilTest] = true;
m_clearStates.depthFunc = RendererComparison_Always;
m_clearStates.frontFace.stencilCompare = RendererComparison_Always;
m_clearStates.frontFace.stencilPass = nzStencilOperation_Zero;
}
if (matEntry.enabled)
DeferredGeometryPass::~DeferredGeometryPass() = default;
bool DeferredGeometryPass::Process(const SceneData& sceneData, unsigned int firstWorkTexture, unsigned secondWorkTexture) const
{
NazaraAssert(sceneData.viewer, "Invalid viewer");
NazaraUnused(firstWorkTexture);
NazaraUnused(secondWorkTexture);
bool instancingEnabled = m_deferredTechnique->IsInstancingEnabled();
m_GBufferRTT->SetColorTargets({0, 1, 2}); // G-Buffer
Renderer::SetTarget(m_GBufferRTT);
Renderer::SetViewport(Recti(0, 0, m_dimensions.x, m_dimensions.y));
Renderer::SetRenderStates(m_clearStates);
Renderer::SetShader(m_clearShader);
Renderer::DrawFullscreenQuad();
Renderer::SetMatrix(MatrixType_Projection, sceneData.viewer->GetProjectionMatrix());
Renderer::SetMatrix(MatrixType_View, sceneData.viewer->GetViewMatrix());
const Shader* lastShader = nullptr;
const ShaderUniforms* shaderUniforms = nullptr;
for (auto& matIt : m_renderQueue->opaqueModels)
{
NzDeferredRenderQueue::MeshInstanceContainer& meshInstances = matEntry.meshMap;
auto& matEntry = matIt.second;
if (!meshInstances.empty())
if (matEntry.enabled)
{
const NzMaterial* material = matIt.first;
DeferredRenderQueue::MeshInstanceContainer& meshInstances = matEntry.meshMap;
bool useInstancing = instancingEnabled && matEntry.instancingEnabled;
// On commence par récupérer le programme du matériau
nzUInt32 flags = nzShaderFlags_Deferred;
if (useInstancing)
flags |= nzShaderFlags_Instancing;
const NzShader* shader = material->Apply(flags);
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
if (!meshInstances.empty())
{
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
const Material* material = matIt.first;
// Couleur ambiante de la scène
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position de la caméra
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
bool useInstancing = instancingEnabled && matEntry.instancingEnabled;
lastShader = shader;
}
// On commence par récupérer le programme du matériau
UInt32 flags = ShaderFlags_Deferred;
if (useInstancing)
flags |= ShaderFlags_Instancing;
// Meshes
for (auto& meshIt : meshInstances)
{
const NzMeshData& meshData = meshIt.first;
auto& meshEntry = meshIt.second;
const Shader* shader = material->Apply(flags);
std::vector<NzMatrix4f>& instances = meshEntry.instances;
if (!instances.empty())
// Les uniformes sont conservées au sein d'un programme, inutile de les renvoyer tant qu'il ne change pas
if (shader != lastShader)
{
const NzIndexBuffer* indexBuffer = meshData.indexBuffer;
const NzVertexBuffer* vertexBuffer = meshData.vertexBuffer;
// Index des uniformes dans le shader
shaderUniforms = GetShaderUniforms(shader);
// Gestion du draw call avant la boucle de rendu
NzRenderer::DrawCall drawFunc;
NzRenderer::DrawCallInstanced instancedDrawFunc;
unsigned int indexCount;
// Couleur ambiante de la scène
shader->SendColor(shaderUniforms->sceneAmbient, sceneData.ambientColor);
// Position de la caméra
shader->SendVector(shaderUniforms->eyePosition, sceneData.viewer->GetEyePosition());
if (indexBuffer)
lastShader = shader;
}
// Meshes
for (auto& meshIt : meshInstances)
{
const MeshData& meshData = meshIt.first;
auto& meshEntry = meshIt.second;
std::vector<Matrix4f>& instances = meshEntry.instances;
if (!instances.empty())
{
drawFunc = NzRenderer::DrawIndexedPrimitives;
instancedDrawFunc = NzRenderer::DrawIndexedPrimitivesInstanced;
indexCount = indexBuffer->GetIndexCount();
}
else
{
drawFunc = NzRenderer::DrawPrimitives;
instancedDrawFunc = NzRenderer::DrawPrimitivesInstanced;
indexCount = vertexBuffer->GetVertexCount();
}
const IndexBuffer* indexBuffer = meshData.indexBuffer;
const VertexBuffer* vertexBuffer = meshData.vertexBuffer;
NzRenderer::SetIndexBuffer(indexBuffer);
NzRenderer::SetVertexBuffer(vertexBuffer);
// Gestion du draw call avant la boucle de rendu
Renderer::DrawCall drawFunc;
Renderer::DrawCallInstanced instancedDrawFunc;
unsigned int indexCount;
if (useInstancing)
{
// On récupère le buffer d'instancing du Renderer et on le configure pour fonctionner avec des matrices
NzVertexBuffer* instanceBuffer = NzRenderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(NzVertexDeclaration::Get(nzVertexLayout_Matrix4));
const NzMatrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Le nombre de matrices que peut contenir le buffer
while (instanceCount > 0)
if (indexBuffer)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// On remplit l'instancing buffer avec nos matrices world
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
// Et on affiche
instancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
drawFunc = Renderer::DrawIndexedPrimitives;
instancedDrawFunc = Renderer::DrawIndexedPrimitivesInstanced;
indexCount = indexBuffer->GetIndexCount();
}
}
else
{
// Sans instancing, on doit effectuer un draw call pour chaque instance
// Cela reste néanmoins plus rapide que l'instancing en dessous d'un certain nombre d'instances
// À cause du temps de modification du buffer d'instancing
for (const NzMatrix4f& matrix : instances)
else
{
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
drawFunc(meshData.primitiveMode, 0, indexCount);
drawFunc = Renderer::DrawPrimitives;
instancedDrawFunc = Renderer::DrawPrimitivesInstanced;
indexCount = vertexBuffer->GetVertexCount();
}
}
instances.clear();
Renderer::SetIndexBuffer(indexBuffer);
Renderer::SetVertexBuffer(vertexBuffer);
if (useInstancing)
{
// On récupère le buffer d'instancing du Renderer et on le configure pour fonctionner avec des matrices
VertexBuffer* instanceBuffer = Renderer::GetInstanceBuffer();
instanceBuffer->SetVertexDeclaration(VertexDeclaration::Get(VertexLayout_Matrix4));
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Le nombre de matrices que peut contenir le buffer
while (instanceCount > 0)
{
// On calcule le nombre d'instances que l'on pourra afficher cette fois-ci (Selon la taille du buffer d'instancing)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// On remplit l'instancing buffer avec nos matrices world
instanceBuffer->Fill(instanceMatrices, 0, renderedInstanceCount, true);
instanceMatrices += renderedInstanceCount;
// Et on affiche
instancedDrawFunc(renderedInstanceCount, meshData.primitiveMode, 0, indexCount);
}
}
else
{
// Sans instancing, on doit effectuer un draw call pour chaque instance
// Cela reste néanmoins plus rapide que l'instancing en dessous d'un certain nombre d'instances
// À cause du temps de modification du buffer d'instancing
for (const Matrix4f& matrix : instances)
{
Renderer::SetMatrix(MatrixType_World, matrix);
drawFunc(meshData.primitiveMode, 0, indexCount);
}
}
instances.clear();
}
}
}
// Et on remet à zéro les données
matEntry.enabled = false;
matEntry.instancingEnabled = false;
}
}
return false; // On ne fait que remplir le G-Buffer, les work texture ne sont pas affectées
}
bool DeferredGeometryPass::Resize(const Vector2ui& dimensions)
{
DeferredRenderPass::Resize(dimensions);
/*
G-Buffer:
Texture0: Diffuse Color + Flags
Texture1: Encoded normal
Texture2: Specular value + Shininess
Texture3: N/A
*/
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
unsigned int width = dimensions.x;
unsigned int height = dimensions.y;
m_depthStencilBuffer->Create(PixelFormatType_Depth24Stencil8, width, height);
m_GBuffer[0]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height); // Texture 0 : Diffuse Color + Specular
m_GBuffer[1]->Create(ImageType_2D, PixelFormatType_RG16F, width, height); // Texture 1 : Encoded normal
m_GBuffer[2]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height); // Texture 2 : Depth (24bits) + Shininess
m_GBufferRTT->Create(true);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 0, m_GBuffer[0]);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 1, m_GBuffer[1]);
m_GBufferRTT->AttachTexture(AttachmentPoint_Color, 2, m_GBuffer[2]);
// Texture 3 : Emission map ?
m_GBufferRTT->AttachBuffer(AttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_GBufferRTT->Unlock();
m_workRTT->Create(true);
for (unsigned int i = 0; i < 2; ++i)
{
m_workTextures[i]->Create(ImageType_2D, PixelFormatType_RGBA8, width, height);
m_workRTT->AttachTexture(AttachmentPoint_Color, i, m_workTextures[i]);
}
// Et on remet à zéro les données
matEntry.enabled = false;
matEntry.instancingEnabled = false;
m_workRTT->AttachBuffer(AttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_workRTT->Unlock();
if (!m_workRTT->IsComplete() || !m_GBufferRTT->IsComplete())
{
NazaraError("Incomplete RTT");
return false;
}
return true;
}
}
return false; // On ne fait que remplir le G-Buffer, les work texture ne sont pas affectées
}
bool NzDeferredGeometryPass::Resize(const NzVector2ui& dimensions)
{
NzDeferredRenderPass::Resize(dimensions);
/*
G-Buffer:
Texture0: Diffuse Color + Flags
Texture1: Encoded normal
Texture2: Specular value + Shininess
Texture3: N/A
*/
try
{
NzErrorFlags errFlags(nzErrorFlag_ThrowException);
unsigned int width = dimensions.x;
unsigned int height = dimensions.y;
m_depthStencilBuffer->Create(nzPixelFormat_Depth24Stencil8, width, height);
m_GBuffer[0]->Create(nzImageType_2D, nzPixelFormat_RGBA8, width, height); // Texture 0 : Diffuse Color + Specular
m_GBuffer[1]->Create(nzImageType_2D, nzPixelFormat_RG16F, width, height); // Texture 1 : Encoded normal
m_GBuffer[2]->Create(nzImageType_2D, nzPixelFormat_RGBA8, width, height); // Texture 2 : Depth (24bits) + Shininess
m_GBufferRTT->Create(true);
m_GBufferRTT->AttachTexture(nzAttachmentPoint_Color, 0, m_GBuffer[0]);
m_GBufferRTT->AttachTexture(nzAttachmentPoint_Color, 1, m_GBuffer[1]);
m_GBufferRTT->AttachTexture(nzAttachmentPoint_Color, 2, m_GBuffer[2]);
// Texture 3 : Emission map ?
m_GBufferRTT->AttachBuffer(nzAttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_GBufferRTT->Unlock();
m_workRTT->Create(true);
for (unsigned int i = 0; i < 2; ++i)
catch (const std::exception& e)
{
m_workTextures[i]->Create(nzImageType_2D, nzPixelFormat_RGBA8, width, height);
m_workRTT->AttachTexture(nzAttachmentPoint_Color, i, m_workTextures[i]);
}
m_workRTT->AttachBuffer(nzAttachmentPoint_DepthStencil, 0, m_depthStencilBuffer);
m_workRTT->Unlock();
if (!m_workRTT->IsComplete() || !m_GBufferRTT->IsComplete())
{
NazaraError("Incomplete RTT");
NazaraError("Failed to create G-Buffer RTT: " + String(e.what()));
return false;
}
return true;
}
catch (const std::exception& e)
const DeferredGeometryPass::ShaderUniforms* DeferredGeometryPass::GetShaderUniforms(const Shader* shader) const
{
NazaraError("Failed to create G-Buffer RTT: " + NzString(e.what()));
return false;
}
}
auto it = m_shaderUniforms.find(shader);
if (it == m_shaderUniforms.end())
{
ShaderUniforms uniforms;
uniforms.shaderReleaseSlot.Connect(shader->OnShaderRelease, this, &DeferredGeometryPass::OnShaderInvalidated);
uniforms.shaderUniformInvalidatedSlot.Connect(shader->OnShaderUniformInvalidated, this, &DeferredGeometryPass::OnShaderInvalidated);
const NzDeferredGeometryPass::ShaderUniforms* NzDeferredGeometryPass::GetShaderUniforms(const NzShader* shader) const
{
auto it = m_shaderUniforms.find(shader);
if (it == m_shaderUniforms.end())
uniforms.eyePosition = shader->GetUniformLocation("EyePosition");
uniforms.sceneAmbient = shader->GetUniformLocation("SceneAmbient");
uniforms.textureOverlay = shader->GetUniformLocation("TextureOverlay");
it = m_shaderUniforms.emplace(shader, std::move(uniforms)).first;
}
return &it->second;
}
void DeferredGeometryPass::OnShaderInvalidated(const Shader* shader) const
{
ShaderUniforms uniforms;
uniforms.shaderReleaseSlot.Connect(shader->OnShaderRelease, this, &NzDeferredGeometryPass::OnShaderInvalidated);
uniforms.shaderUniformInvalidatedSlot.Connect(shader->OnShaderUniformInvalidated, this, &NzDeferredGeometryPass::OnShaderInvalidated);
uniforms.eyePosition = shader->GetUniformLocation("EyePosition");
uniforms.sceneAmbient = shader->GetUniformLocation("SceneAmbient");
uniforms.textureOverlay = shader->GetUniformLocation("TextureOverlay");
it = m_shaderUniforms.emplace(shader, std::move(uniforms)).first;
m_shaderUniforms.erase(shader);
}
return &it->second;
}
void NzDeferredGeometryPass::OnShaderInvalidated(const NzShader* shader) const
{
m_shaderUniforms.erase(shader);
}