Merge branch 'master' into vulkan

This commit is contained in:
Lynix
2016-11-21 00:32:57 +01:00
140 changed files with 4261 additions and 1744 deletions

View File

@@ -15,6 +15,22 @@ namespace Nz
* \brief Core class that represents an array of bytes
*/
/*!
* \brief Gives a string representation in base 16
* \return String in base 16
*/
String ByteArray::ToHex() const
{
std::size_t length = m_array.size() * 2;
String hexOutput(length, '\0');
for (std::size_t i = 0; i < m_array.size(); ++i)
std::sprintf(&hexOutput[i * 2], "%02x", m_array[i]);
return hexOutput;
}
/*!
* \brief Output operator
* \return The stream

View File

@@ -906,5 +906,5 @@ namespace Nz
}
return true;
};
}
}

View File

@@ -159,13 +159,13 @@ namespace Nz
instanceBuffer->SetVertexDeclaration(VertexDeclaration::Get(VertexLayout_Matrix4));
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // The number of matrices that can be hold in the buffer
std::size_t instanceCount = instances.size();
std::size_t maxInstanceCount = instanceBuffer->GetVertexCount(); // The number of matrices that can be hold in the buffer
while (instanceCount > 0)
{
// We compute the number of instances that we will be able to show this time (Depending on the instance buffer size)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
std::size_t renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// We fill the instancing buffer with our world matrices

View File

@@ -267,13 +267,13 @@ namespace Nz
const Texture* overlay = overlayIt.first;
auto& spriteChainVector = overlayIt.second.spriteChains;
unsigned int spriteChainCount = spriteChainVector.size();
std::size_t spriteChainCount = spriteChainVector.size();
if (spriteChainCount > 0)
{
Renderer::SetTexture(overlayUnit, (overlay) ? overlay : &m_whiteTexture);
unsigned int spriteChain = 0; // Which chain of sprites are we treating
unsigned int spriteChainOffset = 0; // Where was the last offset where we stopped in the last chain
std::size_t spriteChain = 0; // Which chain of sprites are we treating
std::size_t spriteChainOffset = 0; // Where was the last offset where we stopped in the last chain
do
{
@@ -281,13 +281,13 @@ namespace Nz
BufferMapper<VertexBuffer> vertexMapper(m_spriteBuffer, BufferAccess_DiscardAndWrite);
VertexStruct_XYZ_Color_UV* vertices = static_cast<VertexStruct_XYZ_Color_UV*>(vertexMapper.GetPointer());
unsigned int spriteCount = 0;
unsigned int maxSpriteCount = std::min(s_maxQuads, m_spriteBuffer.GetVertexCount() / 4);
std::size_t spriteCount = 0;
std::size_t maxSpriteCount = std::min(s_maxQuads, m_spriteBuffer.GetVertexCount() / 4);
do
{
ForwardRenderQueue::SpriteChain_XYZ_Color_UV& currentChain = spriteChainVector[spriteChain];
unsigned int count = std::min(maxSpriteCount - spriteCount, currentChain.spriteCount - spriteChainOffset);
std::size_t count = std::min(maxSpriteCount - spriteCount, currentChain.spriteCount - spriteChainOffset);
std::memcpy(vertices, currentChain.vertices + spriteChainOffset * 4, 4 * count * sizeof(VertexStruct_XYZ_Color_UV));
vertices += count * 4;
@@ -373,17 +373,17 @@ namespace Nz
auto& entry = matIt.second;
auto& billboardVector = entry.billboards;
unsigned int billboardCount = billboardVector.size();
std::size_t billboardCount = billboardVector.size();
if (billboardCount > 0)
{
// We begin to apply the material (and get the shader activated doing so)
material->Apply(pipelineInstance);
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = instanceBuffer->GetVertexCount();
std::size_t maxBillboardPerDraw = instanceBuffer->GetVertexCount();
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
std::size_t renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
instanceBuffer->Fill(data, 0, renderedBillboardCount, true);
@@ -435,12 +435,12 @@ namespace Nz
auto& billboardVector = entry.billboards;
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = std::min(s_maxQuads, m_billboardPointBuffer.GetVertexCount() / 4);
std::size_t maxBillboardPerDraw = std::min(s_maxQuads, m_billboardPointBuffer.GetVertexCount() / 4);
unsigned int billboardCount = billboardVector.size();
std::size_t billboardCount = billboardVector.size();
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
std::size_t renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
BufferMapper<VertexBuffer> vertexMapper(m_billboardPointBuffer, BufferAccess_DiscardAndWrite, 0, renderedBillboardCount * 4);
@@ -584,13 +584,13 @@ namespace Nz
instanceBuffer->SetVertexDeclaration(VertexDeclaration::Get(VertexLayout_Matrix4));
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Maximum number of instance in one batch
std::size_t instanceCount = instances.size();
std::size_t maxInstanceCount = instanceBuffer->GetVertexCount(); // Maximum number of instance in one batch
while (instanceCount > 0)
{
// We compute the number of instances that we will be able to draw this time (depending on the instancing buffer size)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
std::size_t renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// We fill the instancing buffer with our world matrices

View File

@@ -383,7 +383,7 @@ namespace Nz
auto& transparentModelData = currentLayer.transparentModelData;
// The material is transparent, we must draw this mesh using another way (after the rendering of opages objects while sorting them)
unsigned int index = transparentModelData.size();
std::size_t index = transparentModelData.size();
transparentModelData.resize(index+1);
TransparentModelData& data = transparentModelData.back();
@@ -603,7 +603,7 @@ namespace Nz
{
Layer& layer = pair.second;
std::sort(layer.transparentModels.begin(), layer.transparentModels.end(), [&layer, &nearPlane, &viewerNormal] (unsigned int index1, unsigned int index2)
std::sort(layer.transparentModels.begin(), layer.transparentModels.end(), [&layer, &nearPlane, &viewerNormal] (std::size_t index1, std::size_t index2)
{
const Spheref& sphere1 = layer.transparentModelData[index1].squaredBoundingSphere;
const Spheref& sphere2 = layer.transparentModelData[index2].squaredBoundingSphere;
@@ -672,7 +672,7 @@ namespace Nz
BatchedBillboardEntry& entry = it->second;
auto& billboardVector = entry.billboards;
unsigned int prevSize = billboardVector.size();
std::size_t prevSize = billboardVector.size();
billboardVector.resize(prevSize + count);
return &billboardVector[prevSize];

View File

@@ -33,8 +33,8 @@ namespace Nz
Vector2f uv;
};
unsigned int s_maxQuads = std::numeric_limits<UInt16>::max() / 6;
unsigned int s_vertexBufferSize = 4 * 1024 * 1024; // 4 MiB
std::size_t s_maxQuads = std::numeric_limits<UInt16>::max() / 6;
std::size_t s_vertexBufferSize = 4 * 1024 * 1024; // 4 MiB
}
/*!
@@ -347,13 +347,13 @@ namespace Nz
const Texture* overlay = overlayIt.first;
auto& spriteChainVector = overlayIt.second.spriteChains;
unsigned int spriteChainCount = spriteChainVector.size();
std::size_t spriteChainCount = spriteChainVector.size();
if (spriteChainCount > 0)
{
Renderer::SetTexture(overlayUnit, (overlay) ? overlay : &m_whiteTexture);
unsigned int spriteChain = 0; // Which chain of sprites are we treating
unsigned int spriteChainOffset = 0; // Where was the last offset where we stopped in the last chain
std::size_t spriteChain = 0; // Which chain of sprites are we treating
std::size_t spriteChainOffset = 0; // Where was the last offset where we stopped in the last chain
do
{
@@ -361,13 +361,13 @@ namespace Nz
BufferMapper<VertexBuffer> vertexMapper(m_spriteBuffer, BufferAccess_DiscardAndWrite);
VertexStruct_XYZ_Color_UV* vertices = static_cast<VertexStruct_XYZ_Color_UV*>(vertexMapper.GetPointer());
unsigned int spriteCount = 0;
unsigned int maxSpriteCount = std::min(s_maxQuads, m_spriteBuffer.GetVertexCount() / 4);
std::size_t spriteCount = 0;
std::size_t maxSpriteCount = std::min<std::size_t>(s_maxQuads, m_spriteBuffer.GetVertexCount() / 4);
do
{
ForwardRenderQueue::SpriteChain_XYZ_Color_UV& currentChain = spriteChainVector[spriteChain];
unsigned int count = std::min(maxSpriteCount - spriteCount, currentChain.spriteCount - spriteChainOffset);
std::size_t count = std::min(maxSpriteCount - spriteCount, currentChain.spriteCount - spriteChainOffset);
std::memcpy(vertices, currentChain.vertices + spriteChainOffset * 4, 4 * count * sizeof(VertexStruct_XYZ_Color_UV));
vertices += count * 4;
@@ -450,17 +450,17 @@ namespace Nz
auto& entry = matIt.second;
auto& billboardVector = entry.billboards;
unsigned int billboardCount = billboardVector.size();
std::size_t billboardCount = billboardVector.size();
if (billboardCount > 0)
{
// We begin to apply the material (and get the shader activated doing so)
material->Apply(pipelineInstance);
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = instanceBuffer->GetVertexCount();
std::size_t maxBillboardPerDraw = instanceBuffer->GetVertexCount();
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
std::size_t renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
instanceBuffer->Fill(data, 0, renderedBillboardCount, true);
@@ -512,12 +512,12 @@ namespace Nz
auto& billboardVector = entry.billboards;
const ForwardRenderQueue::BillboardData* data = &billboardVector[0];
unsigned int maxBillboardPerDraw = std::min(s_maxQuads, m_billboardPointBuffer.GetVertexCount() / 4);
std::size_t maxBillboardPerDraw = std::min<std::size_t>(s_maxQuads, m_billboardPointBuffer.GetVertexCount() / 4);
unsigned int billboardCount = billboardVector.size();
std::size_t billboardCount = billboardVector.size();
do
{
unsigned int renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
std::size_t renderedBillboardCount = std::min(billboardCount, maxBillboardPerDraw);
billboardCount -= renderedBillboardCount;
BufferMapper<VertexBuffer> vertexMapper(m_billboardPointBuffer, BufferAccess_DiscardAndWrite, 0, renderedBillboardCount * 4);
@@ -666,16 +666,16 @@ namespace Nz
// With instancing, impossible to select the lights for each object
// So, it's only activated for directional lights
unsigned int lightCount = m_renderQueue.directionalLights.size();
unsigned int lightIndex = 0;
std::size_t lightCount = m_renderQueue.directionalLights.size();
std::size_t lightIndex = 0;
RendererComparison oldDepthFunc = Renderer::GetDepthFunc();
unsigned int passCount = (lightCount == 0) ? 1 : (lightCount - 1) / NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS + 1;
for (unsigned int pass = 0; pass < passCount; ++pass)
std::size_t passCount = (lightCount == 0) ? 1 : (lightCount - 1) / NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS + 1;
for (std::size_t pass = 0; pass < passCount; ++pass)
{
if (shaderUniforms->hasLightUniforms)
{
unsigned int renderedLightCount = std::min(lightCount, NazaraSuffixMacro(NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS, U));
std::size_t renderedLightCount = std::min<std::size_t>(lightCount, NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS);
lightCount -= renderedLightCount;
if (pass == 1)
@@ -690,18 +690,18 @@ namespace Nz
}
// Sends the uniforms
for (unsigned int i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
for (std::size_t i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, shaderUniforms->lightOffset * i, freeTextureUnit + i);
}
const Matrix4f* instanceMatrices = &instances[0];
unsigned int instanceCount = instances.size();
unsigned int maxInstanceCount = instanceBuffer->GetVertexCount(); // Maximum number of instance in one batch
std::size_t instanceCount = instances.size();
std::size_t maxInstanceCount = instanceBuffer->GetVertexCount(); // Maximum number of instance in one batch
while (instanceCount > 0)
{
// We compute the number of instances that we will be able to draw this time (depending on the instancing buffer size)
unsigned int renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
std::size_t renderedInstanceCount = std::min(instanceCount, maxInstanceCount);
instanceCount -= renderedInstanceCount;
// We fill the instancing buffer with our world matrices
@@ -726,16 +726,16 @@ namespace Nz
// Choose the lights depending on an object position and apparent radius
ChooseLights(Spheref(matrix.GetTranslation() + squaredBoundingSphere.GetPosition(), squaredBoundingSphere.radius));
unsigned int lightCount = m_lights.size();
std::size_t lightCount = m_lights.size();
Renderer::SetMatrix(MatrixType_World, matrix);
unsigned int lightIndex = 0;
std::size_t lightIndex = 0;
RendererComparison oldDepthFunc = Renderer::GetDepthFunc(); // In the case where we have to change it
unsigned int passCount = (lightCount == 0) ? 1 : (lightCount - 1) / NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS + 1;
for (unsigned int pass = 0; pass < passCount; ++pass)
std::size_t passCount = (lightCount == 0) ? 1 : (lightCount - 1) / NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS + 1;
for (std::size_t pass = 0; pass < passCount; ++pass)
{
lightCount -= std::min(lightCount, NazaraSuffixMacro(NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS, U));
lightCount -= std::min<std::size_t>(lightCount, NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS);
if (pass == 1)
{
@@ -749,7 +749,7 @@ namespace Nz
}
// Sends the light uniforms to the shader
for (unsigned int i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
for (std::size_t i = 0; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, lightIndex++, shaderUniforms->lightOffset*i, freeTextureUnit + i);
// And we draw
@@ -835,7 +835,7 @@ namespace Nz
{
lightCount = std::min(m_renderQueue.directionalLights.size(), static_cast<decltype(m_renderQueue.directionalLights.size())>(NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS));
for (unsigned int i = 0; i < lightCount; ++i)
for (std::size_t i = 0; i < lightCount; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset * i, freeTextureUnit++);
}
@@ -874,7 +874,7 @@ namespace Nz
float radius = modelData.squaredBoundingSphere.radius;
ChooseLights(Spheref(position, radius), false);
for (unsigned int i = lightCount; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
for (std::size_t i = lightCount; i < NAZARA_GRAPHICS_MAX_LIGHT_PER_PASS; ++i)
SendLightUniforms(shader, shaderUniforms->lightUniforms, i, shaderUniforms->lightOffset*i, freeTextureUnit++);
}

View File

@@ -94,6 +94,7 @@ namespace Nz
void InstancedRenderable::UpdateData(InstanceData* instanceData) const
{
NazaraAssert(instanceData, "Invalid instance data");
NazaraUnused(instanceData);
}
InstancedRenderableLibrary::LibraryMap InstancedRenderable::s_library;

View File

@@ -100,7 +100,7 @@ namespace Nz
* \remark Produces a NazaraError with NAZARA_GRAPHICS_SAFE defined if type is not supported
*/
void ParticleDeclaration::EnableComponent(ParticleComponent component, ComponentType type, unsigned int offset)
void ParticleDeclaration::EnableComponent(ParticleComponent component, ComponentType type, std::size_t offset)
{
#ifdef NAZARA_DEBUG
if (component > ParticleComponent_Max)
@@ -145,7 +145,7 @@ namespace Nz
* \remark Produces a NazaraError with NAZARA_GRAPHICS_SAFE defined if enumeration is equal to ParticleComponent_Unused
*/
void ParticleDeclaration::GetComponent(ParticleComponent component, bool* enabled, ComponentType* type, unsigned int* offset) const
void ParticleDeclaration::GetComponent(ParticleComponent component, bool* enabled, ComponentType* type, std::size_t* offset) const
{
#ifdef NAZARA_DEBUG
if (component > ParticleComponent_Max)
@@ -180,7 +180,7 @@ namespace Nz
* \return Stride of the declaration
*/
unsigned int ParticleDeclaration::GetStride() const
std::size_t ParticleDeclaration::GetStride() const
{
return m_stride;
}

View File

@@ -74,11 +74,11 @@ namespace Nz
if (emissionCount >= 1.f)
{
// We compute the maximum number of particles which can be emitted
unsigned int emissionCountInt = static_cast<unsigned int>(emissionCount);
unsigned int maxParticleCount = emissionCountInt * m_emissionCount;
std::size_t emissionCountInt = static_cast<std::size_t>(emissionCount);
std::size_t maxParticleCount = emissionCountInt * m_emissionCount;
// We get the number of particles that we are able to create (depending on the free space)
unsigned int particleCount = std::min(maxParticleCount, system.GetMaxParticleCount() - system.GetParticleCount());
std::size_t particleCount = std::min(maxParticleCount, system.GetMaxParticleCount() - system.GetParticleCount());
if (particleCount == 0)
return;
@@ -115,7 +115,7 @@ namespace Nz
* \return Current emission count
*/
unsigned int ParticleEmitter::GetEmissionCount() const
std::size_t ParticleEmitter::GetEmissionCount() const
{
return m_emissionCount;
}
@@ -146,7 +146,7 @@ namespace Nz
* \param count Emission count
*/
void ParticleEmitter::SetEmissionCount(unsigned int count)
void ParticleEmitter::SetEmissionCount(std::size_t count)
{
m_emissionCount = count;
}

View File

@@ -142,11 +142,10 @@ namespace Nz
* \remark Produces a NazaraAssert if renderQueue is invalid
*/
void ParticleGroup::AddToRenderQueue(AbstractRenderQueue* renderQueue, const Matrix4f& transformMatrix) const
void ParticleGroup::AddToRenderQueue(AbstractRenderQueue* renderQueue, const Matrix4f& /*transformMatrix*/) const
{
NazaraAssert(m_renderer, "Invalid particle renderer");
NazaraAssert(renderQueue, "Invalid renderqueue");
NazaraUnused(transformMatrix);
if (m_particleCount > 0)
{
@@ -215,7 +214,7 @@ namespace Nz
if (m_particleCount + count > m_maxParticleCount)
return nullptr;
unsigned int particlesIndex = m_particleCount;
std::size_t particlesIndex = m_particleCount;
m_particleCount += count;
return &m_buffer[particlesIndex * m_particleSize];
@@ -264,7 +263,7 @@ namespace Nz
* \return Current maximum number
*/
unsigned int ParticleGroup::GetMaxParticleCount() const
std::size_t ParticleGroup::GetMaxParticleCount() const
{
return m_maxParticleCount;
}
@@ -274,7 +273,7 @@ namespace Nz
* \return Current number
*/
unsigned int ParticleGroup::GetParticleCount() const
std::size_t ParticleGroup::GetParticleCount() const
{
return m_particleCount;
}
@@ -284,7 +283,7 @@ namespace Nz
* \return Current size
*/
unsigned int ParticleGroup::GetParticleSize() const
std::size_t ParticleGroup::GetParticleSize() const
{
return m_particleSize;
}
@@ -295,7 +294,7 @@ namespace Nz
* \param index Index of the particle
*/
void ParticleGroup::KillParticle(unsigned int index)
void ParticleGroup::KillParticle(std::size_t index)
{
///FIXME: Verify the index
@@ -402,10 +401,8 @@ namespace Nz
* \param transformMatrix Matrix transformation for our bounding volume
*/
void ParticleGroup::UpdateBoundingVolume(const Matrix4f& transformMatrix)
void ParticleGroup::UpdateBoundingVolume(const Matrix4f& /*transformMatrix*/)
{
NazaraUnused(transformMatrix);
// Nothing to do here (our bounding volume is global)
}

View File

@@ -170,7 +170,7 @@ namespace Nz
* \return Number of techniques
*/
unsigned int RenderTechniques::GetCount()
std::size_t RenderTechniques::GetCount()
{
return s_renderTechniques.size();
}

View File

@@ -44,6 +44,64 @@ namespace Nz
m_boundingVolume.Set(-origin, m_size.x*Vector3f::Right() + m_size.y*Vector3f::Down() - origin);
}
/*!
* \brief Sets the material of the sprite from a name
*
* Tries to get a material from the MaterialLibrary and then the MaterialManager (which will treat the name as a path)
* Fails if the texture name is not a part of the MaterialLibrary nor the MaterialManager (which fails if it couldn't load the texture from its filepath)
*
* \param materialName Named texture for the material
* \param resizeSprite Should the sprite be resized to the material diffuse map size?
*
* \return True if the material was found or loaded from its name/path, false if it couldn't
*/
bool Sprite::SetMaterial(String materialName, bool resizeSprite)
{
MaterialRef material = MaterialLibrary::Query(materialName);
if (!material)
{
material = MaterialManager::Get(materialName);
if (!material)
{
NazaraError("Failed to get material \"" + materialName + "\"");
return false;
}
}
SetMaterial(std::move(material), resizeSprite);
return true;
}
/*!
* \brief Sets the texture of the sprite from a name
*
* Tries to get a texture from the TextureLibrary and then the TextureManager (which will treat the name as a path)
* Fails if the texture name is not a part of the TextureLibrary nor the TextureManager (which fails if it couldn't load the texture from its filepath)
*
* \param textureName Named texture for the sprite
* \param resizeSprite Should the sprite be resized to the texture size?
*
* \return True if the texture was found or loaded from its name/path, false if it couldn't
*
* \remark The sprite material gets copied to prevent accidentally changing other drawable materials
*/
bool Sprite::SetTexture(String textureName, bool resizeSprite)
{
TextureRef texture = TextureLibrary::Query(textureName);
if (!texture)
{
texture = TextureManager::Get(textureName);
if (!texture)
{
NazaraError("Failed to get texture \"" + textureName + "\"");
return false;
}
}
SetTexture(std::move(texture), resizeSprite);
return true;
}
/*!
* \brief Updates the data of the sprite
*

View File

@@ -146,7 +146,7 @@ namespace Nz
if (!m_buffer)
m_buffer = std::make_unique<ByteArray>();
m_buffer->Resize(static_cast<std::size_t>(cursorPos));
m_buffer->Resize(minCapacity);
m_memoryStream.SetBuffer(m_buffer.get(), openMode);
m_memoryStream.SetCursorPos(cursorPos);

View File

@@ -385,7 +385,7 @@ namespace Nz
* \remark Produces a NazaraError because it is a special stream
*/
bool TcpClient::SetCursorPos(UInt64 offset)
bool TcpClient::SetCursorPos(UInt64 /*offset*/)
{
NazaraError("SetCursorPos() cannot be used on sequential streams");
return false;

View File

@@ -437,6 +437,10 @@ namespace Nz
return result;
#else
NazaraUnused(fdarray);
NazaraUnused(nfds);
NazaraUnused(timeout);
if (error)
*error = SocketError_NotSupported;

View File

@@ -10,7 +10,7 @@
namespace Nz
{
Collider2D::~Collider2D() = default;
/******************************** BoxCollider2D *********************************/
BoxCollider2D::BoxCollider2D(const Vector2f& size, float radius) :
@@ -84,4 +84,25 @@ namespace Nz
{
return std::vector<cpShape*>();
}
/******************************** SegmentCollider2D *********************************/
float SegmentCollider2D::ComputeInertialMatrix(float mass) const
{
return static_cast<float>(cpMomentForSegment(mass, cpv(m_first.x, m_first.y), cpv(m_second.x, m_second.y), m_thickness));
}
ColliderType2D SegmentCollider2D::GetType() const
{
return ColliderType2D_Segment;
}
std::vector<cpShape*> SegmentCollider2D::CreateShapes(RigidBody2D* body) const
{
std::vector<cpShape*> shapes;
shapes.push_back(cpSegmentShapeNew(body->GetHandle(), cpv(m_first.x, m_first.y), cpv(m_second.x, m_second.y), m_thickness));
return shapes;
}
}

View File

@@ -2,8 +2,8 @@
// This file is part of the "Nazara Engine - Physics 2D module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics3D/Config.hpp>
#if NAZARA_PHYSICS_MANAGE_MEMORY
#include <Nazara/Physics2D/Config.hpp>
#if NAZARA_PHYSICS2D_MANAGE_MEMORY
#include <Nazara/Core/MemoryManager.hpp>
#include <new> // Nécessaire ?

View File

@@ -24,7 +24,7 @@ namespace Nz
Vector2f PhysWorld2D::GetGravity() const
{
cpVect gravity = cpSpaceGetGravity(m_handle);
return Vector2f(gravity.x, gravity.y);
return Vector2f(Vector2<cpFloat>(gravity.x, gravity.y));
}
cpSpace* PhysWorld2D::GetHandle() const

View File

@@ -22,13 +22,11 @@ namespace Nz
m_geom(),
m_world(world),
m_gravityFactor(1.f),
m_mass(0.f)
m_mass(1.f)
{
NazaraAssert(m_world, "Invalid world");
m_handle = cpBodyNew(0.f, 0.f);
cpBodySetUserData(m_handle, this);
cpSpaceAddBody(m_world->GetHandle(), m_handle);
Create();
SetGeom(geom);
SetMass(mass);
@@ -43,9 +41,7 @@ namespace Nz
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
m_handle = cpBodyNew(0.f, 0.f);
cpBodySetUserData(m_handle, this);
cpSpaceAddBody(m_world->GetHandle(), m_handle);
Create();
SetGeom(object.GetGeom());
SetMass(object.GetMass());
@@ -77,7 +73,7 @@ namespace Nz
switch (coordSys)
{
case CoordSys_Global:
cpBodyApplyForceAtWorldPoint(m_handle, cpv(force.x, force.y), cpv(force.x, force.y));
cpBodyApplyForceAtWorldPoint(m_handle, cpv(force.x, force.y), cpv(point.x, point.y));
break;
case CoordSys_Local:
@@ -169,19 +165,60 @@ namespace Nz
cpBodySetAngularVelocity(m_handle, angularVelocity);
}
void RigidBody2D::SetGeom(Collider2DRef geom)
{
// We have no public way of getting rid of an existing geom without removing the whole body
// So let's save some attributes of the body, destroy it and rebuild it
if (m_geom)
{
cpVect pos = cpBodyGetPosition(m_handle);
cpFloat mass = cpBodyGetMass(m_handle);
cpFloat moment = cpBodyGetMoment(m_handle);
cpFloat rot = cpBodyGetAngle(m_handle);
cpVect vel = cpBodyGetVelocity(m_handle);
Destroy();
Create(mass, moment);
cpBodySetAngle(m_handle, rot);
cpBodySetPosition(m_handle, pos);
cpBodySetVelocity(m_handle, vel);
}
if (geom)
m_geom = geom;
else
m_geom = NullCollider2D::New();
m_shapes = m_geom->CreateShapes(this);
cpSpace* space = m_world->GetHandle();
for (cpShape* shape : m_shapes)
cpSpaceAddShape(space, shape);
cpBodySetMoment(m_handle, m_geom->ComputeInertialMatrix(m_mass));
}
void RigidBody2D::SetMass(float mass)
{
if (m_mass > 0.f)
{
if (mass > 0.f)
{
cpBodySetMass(m_handle, mass);
cpBodySetMoment(m_handle, m_geom->ComputeInertialMatrix(m_mass));
}
else
cpBodySetType(m_handle, CP_BODY_TYPE_STATIC);
}
else if (mass > 0.f)
{
if (cpBodyGetType(m_handle) == CP_BODY_TYPE_STATIC)
{
cpBodySetType(m_handle, CP_BODY_TYPE_DYNAMIC);
cpBodySetMass(m_handle, mass);
cpBodySetMoment(m_handle, m_geom->ComputeInertialMatrix(m_mass));
}
}
m_mass = mass;
@@ -196,6 +233,8 @@ namespace Nz
void RigidBody2D::SetPosition(const Vector2f& position)
{
cpBodySetPosition(m_handle, cpv(position.x, position.y));
if (cpBodyGetType(m_handle) == CP_BODY_TYPE_STATIC)
cpSpaceReindexShapesForBody(m_world->GetHandle(), m_handle);
}
void RigidBody2D::SetRotation(float rotation)
@@ -230,22 +269,26 @@ namespace Nz
return *this;
}
void RigidBody2D::Create(float mass, float moment)
{
m_handle = cpBodyNew(mass, moment);
cpBodySetUserData(m_handle, this);
cpSpaceAddBody(m_world->GetHandle(), m_handle);
}
void RigidBody2D::Destroy()
{
cpSpace* space = m_world->GetHandle();
for (cpShape* shape : m_shapes)
{
cpSpaceRemoveShape(space, shape);
cpShapeFree(shape);
}
if (m_handle)
{
cpSpaceRemoveBody(space, m_handle);
cpBodyFree(m_handle);
}
void RigidBody2D::SetGeom(Collider2DRef geom)
{
if (geom)
m_geom = geom;
else
m_geom = NullCollider2D::New();
m_shapes = m_geom->CreateShapes(this);
}
}
}

View File

@@ -3,7 +3,7 @@
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics3D/Config.hpp>
#if NAZARA_PHYSICS_MANAGE_MEMORY
#if NAZARA_PHYSICS3D_MANAGE_MEMORY
#include <Nazara/Core/MemoryManager.hpp>
#include <new> // Nécessaire ?

View File

@@ -0,0 +1,855 @@
// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Renderer module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Renderer/RenderTexture.hpp>
#include <Nazara/Core/CallOnExit.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Renderer/Context.hpp>
#include <Nazara/Renderer/OpenGL.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/RenderBuffer.hpp>
#include <Nazara/Renderer/Texture.hpp>
#include <Nazara/Utility/PixelFormat.hpp>
#include <functional>
#include <limits>
#include <memory>
#include <vector>
#include <Nazara/Renderer/Debug.hpp>
namespace Nz
{
namespace
{
struct Attachment
{
NazaraSlot(RenderBuffer, OnRenderBufferDestroy, renderBufferDestroySlot);
NazaraSlot(Texture, OnTextureDestroy, textureDestroySlot);
RenderBufferRef buffer;
TextureRef texture;
AttachmentPoint attachmentPoint;
bool isBuffer;
bool isUsed = false;
unsigned int height;
unsigned int width;
};
unsigned int attachmentIndex[AttachmentPoint_Max+1] =
{
3, // AttachmentPoint_Color
0, // AttachmentPoint_Depth
1, // AttachmentPoint_DepthStencil
2 // AttachmentPoint_Stencil
};
AttachmentPoint FormatTypeToAttachment(PixelFormatType format)
{
const PixelFormatInfo& info = PixelFormat::GetInfo(format);
switch (info.content)
{
case PixelFormatContent_ColorRGBA:
return AttachmentPoint_Color;
case PixelFormatContent_DepthStencil:
return (!info.greenMask.TestAny()) ? AttachmentPoint_Depth : AttachmentPoint_DepthStencil;
case PixelFormatContent_Stencil:
return AttachmentPoint_Stencil;
case PixelFormatContent_Undefined:
break;
}
NazaraInternalError("Unexpected pixel format content: 0x" + String::Number(info.content, 16));
return AttachmentPoint_Max;
}
GLuint lockedPrevious = 0;
UInt8 lockedLevel = 0;
}
struct RenderTextureImpl
{
NazaraSlot(Context, OnContextDestroy, contextDestroySlot);
GLuint fbo;
std::vector<Attachment> attachments;
std::vector<UInt8> colorTargets;
mutable std::vector<GLenum> drawBuffers;
const Context* context;
bool complete = false;
bool userDefinedTargets = false;
unsigned int height;
unsigned int width;
};
bool RenderTexture::AttachBuffer(AttachmentPoint attachmentPoint, UInt8 index, RenderBuffer* buffer)
{
#if NAZARA_RENDERER_SAFE
if (!m_impl)
{
NazaraError("Render texture not created");
return false;
}
if (attachmentPoint != AttachmentPoint_Color)
{
if (index > 0)
{
NazaraError("Index must be 0 for non-color attachments");
return false;
}
}
else
{
if (index >= Renderer::GetMaxColorAttachments())
{
NazaraError("Color index is over max color attachments (" + String::Number(index) + " >= " + String::Number(Renderer::GetMaxColorAttachments()) + ")");
return false;
}
}
if (!buffer || !buffer->IsValid())
{
NazaraError("Invalid render buffer");
return false;
}
unsigned int depthStencilIndex = attachmentIndex[AttachmentPoint_DepthStencil];
if (m_impl->attachments.size() > depthStencilIndex && m_impl->attachments[depthStencilIndex].isUsed)
{
if (attachmentPoint == AttachmentPoint_Depth)
{
NazaraError("Depth target already attached by DepthStencil attachment");
return false;
}
else if (attachmentPoint == AttachmentPoint_Stencil)
{
NazaraError("Stencil target already attached by DepthStencil attachment");
return false;
}
}
AttachmentPoint targetAttachmentPoint = FormatTypeToAttachment(buffer->GetFormat());
if (targetAttachmentPoint != attachmentPoint && targetAttachmentPoint != AttachmentPoint_DepthStencil &&
attachmentPoint != AttachmentPoint_Depth && attachmentPoint != AttachmentPoint_Stencil)
{
NazaraError("Pixel format type does not match attachment point type");
return false;
}
#endif
if (!Lock())
{
NazaraError("Failed to lock render texture");
return false;
}
// Détachement de l'attache précédente (Si il y a)
Detach(attachmentPoint, index);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, GL_RENDERBUFFER, buffer->GetOpenGLID());
Unlock();
unsigned int attachIndex = attachmentIndex[attachmentPoint] + index;
if (attachIndex >= m_impl->attachments.size())
m_impl->attachments.resize(attachIndex+1);
Attachment& attachment = m_impl->attachments[attachIndex];
attachment.attachmentPoint = attachmentPoint;
attachment.buffer = buffer;
attachment.renderBufferDestroySlot.Connect(buffer->OnRenderBufferDestroy, std::bind(&RenderTexture::OnRenderBufferDestroy, this, std::placeholders::_1, attachIndex));
attachment.isBuffer = true;
attachment.isUsed = true;
attachment.height = buffer->GetHeight();
attachment.width = buffer->GetWidth();
InvalidateSize();
InvalidateTargets();
return true;
}
bool RenderTexture::AttachBuffer(AttachmentPoint attachmentPoint, UInt8 index, PixelFormatType format, unsigned int width, unsigned int height)
{
RenderBufferRef renderBuffer = RenderBuffer::New();
if (!renderBuffer->Create(format, width, height))
{
NazaraError("Failed to create RenderBuffer");
return false;
}
if (!AttachBuffer(attachmentPoint, index, renderBuffer))
{
NazaraError("Failed to attach buffer");
return false;
}
return true;
}
bool RenderTexture::AttachTexture(AttachmentPoint attachmentPoint, UInt8 index, Texture* texture, unsigned int z)
{
#if NAZARA_RENDERER_SAFE
if (!m_impl)
{
NazaraError("Render texture not created");
return false;
}
if (attachmentPoint != AttachmentPoint_Color)
{
if (index > 0)
{
NazaraError("Index must be 0 for non-color attachments");
return false;
}
}
else
{
if (index >= Renderer::GetMaxColorAttachments())
{
NazaraError("Color index is over max color attachments (" + String::Number(index) + " >= " + String::Number(Renderer::GetMaxColorAttachments()) + ")");
return false;
}
}
if (attachmentPoint == AttachmentPoint_Stencil)
{
NazaraError("Targeting stencil-only textures is not supported");
return false;
}
unsigned int depthStencilIndex = attachmentIndex[AttachmentPoint_DepthStencil];
if (attachmentPoint == AttachmentPoint_Depth && m_impl->attachments.size() > depthStencilIndex &&
m_impl->attachments[depthStencilIndex].isUsed)
{
NazaraError("Depth target already attached by DepthStencil attachment");
return false;
}
if (!texture || !texture->IsValid())
{
NazaraError("Invalid texture");
return false;
}
unsigned int depth = (texture->GetType() == ImageType_Cubemap) ? 6 : texture->GetDepth();
if (z >= depth)
{
NazaraError("Z value exceeds depth (" + String::Number(z) + " >= (" + String::Number(depth) + ')');
return false;
}
AttachmentPoint targetAttachmentPoint = FormatTypeToAttachment(texture->GetFormat());
if (targetAttachmentPoint != attachmentPoint && targetAttachmentPoint != AttachmentPoint_DepthStencil &&
attachmentPoint != AttachmentPoint_Depth && attachmentPoint != AttachmentPoint_Stencil)
{
NazaraError("Pixel format type does not match attachment point type");
return false;
}
#endif
if (!Lock())
{
NazaraError("Failed to lock render texture");
return false;
}
// Détachement de l'attache précédente (Si il y a)
Detach(attachmentPoint, index);
switch (texture->GetType())
{
case ImageType_1D:
glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, GL_TEXTURE_1D, texture->GetOpenGLID(), 0);
break;
case ImageType_1D_Array:
case ImageType_2D_Array:
glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, texture->GetOpenGLID(), 0, z);
break;
case ImageType_2D:
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, GL_TEXTURE_2D, texture->GetOpenGLID(), 0);
break;
case ImageType_3D:
glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, GL_TEXTURE_3D, texture->GetOpenGLID(), 0, z);
break;
case ImageType_Cubemap:
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, OpenGL::CubemapFace[z], texture->GetOpenGLID(), 0);
break;
}
Unlock();
unsigned int attachIndex = attachmentIndex[attachmentPoint] + index;
if (attachIndex >= m_impl->attachments.size())
m_impl->attachments.resize(attachIndex+1);
Attachment& attachment = m_impl->attachments[attachIndex];
attachment.attachmentPoint = attachmentPoint;
attachment.isBuffer = false;
attachment.isUsed = true;
attachment.height = texture->GetHeight();
attachment.texture = texture;
attachment.textureDestroySlot.Connect(texture->OnTextureDestroy, std::bind(&RenderTexture::OnTextureDestroy, this, std::placeholders::_1, attachIndex));
attachment.width = texture->GetWidth();
InvalidateSize();
InvalidateTargets();
return true;
}
bool RenderTexture::Create(bool lock)
{
Destroy();
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return false;
}
#endif
std::unique_ptr<RenderTextureImpl> impl(new RenderTextureImpl);
impl->fbo = 0;
glGenFramebuffers(1, &impl->fbo);
if (!impl->fbo)
{
NazaraError("Failed to create framebuffer");
return false;
}
m_impl = impl.release();
m_impl->context = Context::GetCurrent();
m_impl->contextDestroySlot.Connect(m_impl->context->OnContextDestroy, this, &RenderTexture::OnContextDestroy);
m_checked = false;
m_drawBuffersUpdated = true;
m_sizeUpdated = false;
m_targetsUpdated = true;
if (lock)
{
// En cas d'exception, la ressource sera quand même libérée
CallOnExit onExit([this] ()
{
Destroy();
});
if (!Lock())
{
NazaraError("Failed to lock render texture");
return false;
}
onExit.Reset();
}
OnRenderTargetParametersChange(this);
OnRenderTargetSizeChange(this);
return true;
}
void RenderTexture::Destroy()
{
if (m_impl)
{
if (IsActive())
Renderer::SetTarget(nullptr);
// Le FBO devant être supprimé dans son contexte d'origine, nous déléguons sa suppression à la classe OpenGL
// Celle-ci va libérer le FBO dès que possible (la prochaine fois que son contexte d'origine sera actif)
OpenGL::DeleteFrameBuffer(m_impl->context, m_impl->fbo);
delete m_impl; // Enlève également une références sur les Texture/RenderBuffer
m_impl = nullptr;
}
}
void RenderTexture::Detach(AttachmentPoint attachmentPoint, UInt8 index)
{
#if NAZARA_RENDERER_SAFE
if (!m_impl)
{
NazaraError("Render texture not created");
return;
}
if (attachmentPoint != AttachmentPoint_Color && index > 0)
{
NazaraError("Index must be 0 for non-color attachments");
return;
}
#endif
unsigned int attachIndex = attachmentIndex[attachmentPoint] + index;
if (attachIndex >= m_impl->attachments.size())
return;
Attachment& attachement = m_impl->attachments[attachIndex];
if (!attachement.isUsed)
return;
if (!Lock())
{
NazaraError("Failed to lock render texture");
return;
}
attachement.isUsed = false;
if (attachement.isBuffer)
{
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, GL_RENDERBUFFER, 0);
attachement.buffer = nullptr;
attachement.renderBufferDestroySlot.Disconnect();
}
else
{
if (glFramebufferTexture)
glFramebufferTexture(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, 0, 0);
else
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, OpenGL::Attachment[attachmentPoint]+index, 0, 0, 0);
attachement.texture = nullptr;
attachement.textureDestroySlot.Disconnect();
}
InvalidateSize();
if (attachement.attachmentPoint == AttachmentPoint_Color)
InvalidateTargets();
Unlock();
m_checked = false;
}
unsigned int RenderTexture::GetHeight() const
{
NazaraAssert(m_impl, "Invalid render texture");
if (!m_sizeUpdated)
UpdateSize();
return m_impl->height;
}
RenderTargetParameters RenderTexture::GetParameters() const
{
NazaraAssert(m_impl, "Invalid render texture");
///TODO
return RenderTargetParameters();
}
Vector2ui RenderTexture::GetSize() const
{
NazaraAssert(m_impl, "Invalid render texture");
if (!m_sizeUpdated)
UpdateSize();
return Vector2ui(m_impl->width, m_impl->height);
}
unsigned int RenderTexture::GetWidth() const
{
NazaraAssert(m_impl, "Invalid render texture");
if (!m_sizeUpdated)
UpdateSize();
return m_impl->width;
}
bool RenderTexture::IsComplete() const
{
NazaraAssert(m_impl, "Invalid render texture");
if (!m_checked)
{
if (!Lock())
{
NazaraError("Failed to lock render texture");
return false;
}
GLenum status = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);
Unlock();
m_impl->complete = false;
switch (status)
{
case GL_FRAMEBUFFER_COMPLETE:
m_impl->complete = true;
break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
NazaraError("Incomplete attachment");
break;
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
NazaraInternalError("Incomplete draw buffer");
break;
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
NazaraInternalError("Incomplete read buffer");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
NazaraError("Incomplete missing attachment");
break;
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE:
NazaraError("Incomplete multisample");
break;
case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS:
NazaraError("Incomplete layer targets");
break;
case GL_FRAMEBUFFER_UNSUPPORTED:
NazaraError("Render texture has unsupported attachments");
break;
default:
NazaraInternalError("Unknown error");
}
m_checked = true;
}
return m_impl->complete;
}
bool RenderTexture::IsRenderable() const
{
return IsComplete() && !m_impl->attachments.empty();
}
bool RenderTexture::Lock() const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() != m_impl->context)
{
NazaraError("RenderTexture cannot be used with this context");
return false;
}
#endif
if (lockedLevel++ == 0)
{
GLint previous;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &previous);
lockedPrevious = previous;
if (lockedPrevious != m_impl->fbo)
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_impl->fbo);
}
return true;
}
void RenderTexture::SetColorTargets(const UInt8* targets, unsigned int targetCount) const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
for (unsigned int i = 0; i < targetCount; ++i)
{
unsigned int index = attachmentIndex[AttachmentPoint_Color] + targets[i];
if (index >= m_impl->attachments.size() || !m_impl->attachments[index].isUsed)
{
NazaraError("Target " + String::Number(targets[i]) + " not attached");
return;
}
}
#endif
m_impl->colorTargets.resize(targetCount);
std::memcpy(&m_impl->colorTargets[0], targets, targetCount*sizeof(UInt8));
m_impl->userDefinedTargets = true;
InvalidateTargets();
}
void RenderTexture::SetColorTargets(const std::initializer_list<UInt8>& targets) const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
for (UInt8 target : targets)
{
unsigned int index = attachmentIndex[AttachmentPoint_Color] + target;
if (index >= m_impl->attachments.size() || !m_impl->attachments[index].isUsed)
{
NazaraError("Target " + String::Number(target) + " not attached");
return;
}
}
#endif
m_impl->colorTargets.resize(targets.size());
UInt8* ptr = &m_impl->colorTargets[0];
for (UInt8 index : targets)
*ptr++ = index;
m_impl->userDefinedTargets = true;
InvalidateTargets();
}
void RenderTexture::Unlock() const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() != m_impl->context)
{
NazaraError("RenderTexture cannot be used with this context");
return;
}
if (lockedLevel == 0)
{
NazaraWarning("Unlock called on non-locked texture");
return;
}
#endif
if (--lockedLevel == 0 && lockedPrevious != m_impl->fbo) // Ici, il est important qu'un FBO soit débindé si l'ancien était 0
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, lockedPrevious);
}
unsigned int RenderTexture::GetOpenGLID() const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() != m_impl->context)
{
NazaraError("RenderTexture cannot be used with this context");
return 0;
}
#endif
return m_impl->fbo;
}
bool RenderTexture::HasContext() const
{
return false;
}
void RenderTexture::Blit(RenderTexture* src, Rectui srcRect, RenderTexture* dst, Rectui dstRect, UInt32 buffers, bool bilinearFilter)
{
NazaraAssert(src && src->IsValid(), "Invalid source render texture");
NazaraAssert(dst && dst->IsValid(), "Invalid destination render texture");
#if NAZARA_RENDERER_SAFE
if (srcRect.x+srcRect.width > src->GetWidth() || srcRect.y+srcRect.height > src->GetHeight())
{
NazaraError("Source rectangle dimensions are out of bounds");
return;
}
if (dstRect.x+dstRect.width > dst->GetWidth() || dstRect.y+dstRect.height > dst->GetHeight())
{
NazaraError("Destination rectangle dimensions are out of bounds");
return;
}
if (bilinearFilter && (buffers & RendererBuffer_Depth || buffers & RendererBuffer_Stencil))
{
NazaraError("Filter cannot be bilinear when blitting depth/stencil buffers");
return;
}
#endif
GLbitfield mask = 0;
if (buffers & RendererBuffer_Color)
mask |= GL_COLOR_BUFFER_BIT;
if (buffers & RendererBuffer_Depth)
mask |= GL_DEPTH_BUFFER_BIT;
if (buffers & RendererBuffer_Stencil)
mask |= GL_STENCIL_BUFFER_BIT;
GLint previousDrawBuffer, previousReadBuffer;
glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &previousDrawBuffer);
glGetIntegerv(GL_READ_FRAMEBUFFER_BINDING, &previousReadBuffer);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, dst->GetOpenGLID());
glBindFramebuffer(GL_READ_FRAMEBUFFER, src->GetOpenGLID());
glBlitFramebuffer(srcRect.x, srcRect.y, srcRect.x + srcRect.width, srcRect.y + srcRect.height,
dstRect.x, dstRect.y, dstRect.x + dstRect.width, dstRect.y + dstRect.height,
mask, (bilinearFilter) ? GL_LINEAR : GL_NEAREST);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, previousDrawBuffer);
glBindFramebuffer(GL_READ_FRAMEBUFFER, previousReadBuffer);
}
bool RenderTexture::Activate() const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() != m_impl->context)
{
NazaraError("RenderTexture cannot be used with this context");
return false;
}
#endif
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_impl->fbo);
m_drawBuffersUpdated = false;
return true;
}
void RenderTexture::Desactivate() const
{
NazaraAssert(m_impl, "Invalid render texture");
#if NAZARA_RENDERER_SAFE
if (Context::GetCurrent() != m_impl->context)
{
NazaraError("RenderTexture cannot be used with this context");
return;
}
#endif
glFlush();
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
void RenderTexture::EnsureTargetUpdated() const
{
if (!m_drawBuffersUpdated)
UpdateDrawBuffers();
for (UInt8 index : m_impl->colorTargets)
{
Attachment& attachment = m_impl->attachments[attachmentIndex[AttachmentPoint_Color] + index];
if (!attachment.isBuffer)
attachment.texture->InvalidateMipmaps();
}
}
void RenderTexture::OnContextDestroy(const Context* context)
{
NazaraAssert(m_impl, "Invalid internal state");
NazaraUnused(context);
#ifdef NAZARA_DEBUG
if (m_impl->context != context)
{
NazaraInternalError("Not listening to " + String::Pointer(context));
return;
}
#endif
Destroy();
}
void RenderTexture::OnRenderBufferDestroy(const RenderBuffer* renderBuffer, unsigned int attachmentIndex)
{
NazaraAssert(m_impl, "Invalid internal state");
NazaraAssert(attachmentIndex < m_impl->attachments.size(), "Invalid attachment index");
NazaraAssert(m_impl->attachments[attachmentIndex].isBuffer, "Invalid attachment state");
NazaraUnused(renderBuffer);
Attachment& attachment = m_impl->attachments[attachmentIndex];
attachment.buffer = nullptr;
attachment.isUsed = false;
attachment.renderBufferDestroySlot.Disconnect();
InvalidateTargets();
}
void RenderTexture::OnTextureDestroy(const Texture* texture, unsigned int attachmentIndex)
{
NazaraAssert(m_impl, "Invalid internal state");
NazaraAssert(attachmentIndex < m_impl->attachments.size(), "Invalid attachment index");
NazaraAssert(!m_impl->attachments[attachmentIndex].isBuffer, "Invalid attachment state");
NazaraUnused(texture);
NazaraUnused(attachmentIndex);
InvalidateTargets();
}
void RenderTexture::UpdateDrawBuffers() const
{
if (!m_targetsUpdated)
UpdateTargets();
glDrawBuffers(m_impl->drawBuffers.size(), &m_impl->drawBuffers[0]);
m_drawBuffersUpdated = true;
}
void RenderTexture::UpdateSize() const
{
m_impl->width = 0;
m_impl->height = 0;
for (Attachment& attachment : m_impl->attachments)
{
if (attachment.isUsed)
{
m_impl->height = std::max(m_impl->height, attachment.height);
m_impl->width = std::max(m_impl->width, attachment.width);
}
}
m_sizeUpdated = true;
}
void RenderTexture::UpdateTargets() const
{
if (!m_impl->userDefinedTargets)
{
m_impl->colorTargets.clear();
unsigned int colorIndex = 0;
for (unsigned int index = attachmentIndex[AttachmentPoint_Color]; index < m_impl->attachments.size(); ++index)
m_impl->colorTargets.push_back(colorIndex++);
}
if (m_impl->colorTargets.empty())
{
m_impl->drawBuffers.resize(1);
m_impl->drawBuffers[0] = GL_NONE;
}
else
{
m_impl->drawBuffers.resize(m_impl->colorTargets.size());
GLenum* ptr = &m_impl->drawBuffers[0];
for (UInt8 index : m_impl->colorTargets)
*ptr++ = GL_COLOR_ATTACHMENT0 + index;
}
m_targetsUpdated = true;
}
}

View File

@@ -742,7 +742,7 @@ namespace Nz
Vector3f halfLengths = lengths/2.f;
// Face +X
transform.MakeTransform(Vector3f::UnitX() * halfLengths.x, EulerAnglesf(-90.f, 0.f, -90.f));
transform.MakeTransform(Vector3f::UnitX() * halfLengths.x, EulerAnglesf(-90.f, -90.f, 180.f));
GeneratePlane(Vector2ui(subdivision.z, subdivision.y), Vector2f(lengths.z, lengths.y), Matrix4f::ConcatenateAffine(matrix, transform), textureCoords, vertexPointers, indices, nullptr, indexOffset);
indexOffset += xVertexCount;
indices += xIndexCount;
@@ -776,7 +776,7 @@ namespace Nz
vertexPointers.uvPtr += yVertexCount;
// Face +Z
transform.MakeTransform(Vector3f::UnitZ() * halfLengths.z, EulerAnglesf(-90.f, 90.f, 90.f));
transform.MakeTransform(Vector3f::UnitZ() * halfLengths.z, EulerAnglesf(90.f, 0.f, 0.f));
GeneratePlane(Vector2ui(subdivision.x, subdivision.y), Vector2f(lengths.x, lengths.y), Matrix4f::ConcatenateAffine(matrix, transform), textureCoords, vertexPointers, indices, nullptr, indexOffset);
indexOffset += zVertexCount;
indices += zIndexCount;
@@ -793,7 +793,7 @@ namespace Nz
vertexPointers.uvPtr += zVertexCount;
// Face -X
transform.MakeTransform(-Vector3f::UnitX() * halfLengths.x, EulerAnglesf(-90.f, 0.f, 90.f));
transform.MakeTransform(-Vector3f::UnitX() * halfLengths.x, EulerAnglesf(-90.f, 90.f, 180.f));
GeneratePlane(Vector2ui(subdivision.z, subdivision.y), Vector2f(lengths.z, lengths.y), Matrix4f::ConcatenateAffine(matrix, transform), textureCoords, vertexPointers, indices, nullptr, indexOffset);
indexOffset += xVertexCount;
indices += xIndexCount;
@@ -810,7 +810,7 @@ namespace Nz
vertexPointers.uvPtr += xVertexCount;
// Face -Y
transform.MakeTransform(-Vector3f::UnitY() * halfLengths.y, EulerAnglesf(0.f, 0.f, 180.f));
transform.MakeTransform(-Vector3f::UnitY() * halfLengths.y, EulerAnglesf(0.f, 180.f, 180.f));
GeneratePlane(Vector2ui(subdivision.x, subdivision.z), Vector2f(lengths.x, lengths.z), Matrix4f::ConcatenateAffine(matrix, transform), textureCoords, vertexPointers, indices, nullptr, indexOffset);
indexOffset += yVertexCount;
indices += yIndexCount;
@@ -827,7 +827,7 @@ namespace Nz
vertexPointers.uvPtr += yVertexCount;
// Face -Z
transform.MakeTransform(-Vector3f::UnitZ() * halfLengths.z, EulerAnglesf(-90.f, -90.f, 90.f));
transform.MakeTransform(-Vector3f::UnitZ() * halfLengths.z, EulerAnglesf(90.f, 180.f, 0.f));
GeneratePlane(Vector2ui(subdivision.x, subdivision.y), Vector2f(lengths.x, lengths.y), Matrix4f::ConcatenateAffine(matrix, transform), textureCoords, vertexPointers, indices, nullptr, indexOffset);
indexOffset += zVertexCount;
indices += zIndexCount;

View File

@@ -174,15 +174,15 @@ namespace Nz
if (header.format.flags & DDPF_RGB)
{
// Reverse bits for our masks
info.redMask = ReverseBits(header.format.redMask);
info.greenMask = ReverseBits(header.format.greenMask);
info.blueMask = ReverseBits(header.format.blueMask);
info.redMask = header.format.redMask;
info.greenMask = header.format.greenMask;
info.blueMask = header.format.blueMask;
}
else if (header.format.flags & DDPF_LUMINANCE)
info.redMask = ReverseBits(header.format.redMask);
info.redMask = header.format.redMask;
if (header.format.flags & (DDPF_ALPHA | DDPF_ALPHAPIXELS))
info.alphaMask = ReverseBits(header.format.alphaMask);
info.alphaMask = header.format.alphaMask;
*format = PixelFormat::IdentifyFormat(info);
if (!PixelFormat::IsValid(*format))

View File

@@ -331,19 +331,19 @@ namespace Nz
Emit(mat.specular.b / 255.f);
EmitLine();
if (mat.alpha != 1.f)
if (!NumberEquals(mat.alpha, 1.f))
{
Emit("d ");
EmitLine(mat.alpha);
}
if (mat.refractionIndex != 1.f)
if (!NumberEquals(mat.refractionIndex, 1.f))
{
Emit("ni ");
EmitLine(mat.refractionIndex);
}
if (mat.shininess != 1.f)
if (!NumberEquals(mat.shininess, 1.f))
{
Emit("ns ");
EmitLine(mat.shininess);

View File

@@ -128,17 +128,17 @@ namespace Nz
UInt32 faceReserve = 0;
UInt32 vertexReserve = 0;
unsigned int matCount = 0;
auto GetMaterial = [&] (const String& meshName, const String& matName) -> Mesh*
auto GetMaterial = [&] (const String& mesh, const String& mat) -> Mesh*
{
auto& map = meshesByName[meshName];
auto it = map.find(matName);
auto& map = meshesByName[mesh];
auto it = map.find(mat);
if (it == map.end())
it = map.insert(std::make_pair(matName, MatPair(Mesh(), matCount++))).first;
it = map.insert(std::make_pair(mat, MatPair(Mesh(), matCount++))).first;
Mesh& mesh = it->second.first;
Mesh& meshData = it->second.first;
mesh.faces.reserve(faceReserve);
mesh.vertices.reserve(vertexReserve);
meshData.faces.reserve(faceReserve);
meshData.vertices.reserve(vertexReserve);
faceReserve = 0;
vertexReserve = 0;
@@ -550,19 +550,19 @@ namespace Nz
EmitLine(pair.second.size());
EmitLine();
for (std::size_t meshIndex : pair.second)
for (std::size_t index : pair.second)
{
const Mesh& mesh = m_meshes[meshIndex];
const Mesh& mesh = m_meshes[index];
Emit("g ");
EmitLine(mesh.name);
EmitLine();
Emit("# face count: ");
EmitLine(mesh.faces.size());
Emit("# vertex count: ");
EmitLine(mesh.vertices.size());
for (const Face& face : mesh.faces)
{
Emit('f');

View File

@@ -825,6 +825,44 @@ namespace Nz
return GetLevelSize(m_sharedImage->width, level);
}
bool Image::HasAlpha() const
{
NazaraAssert(m_sharedImage != &emptyImage, "Image must be valid");
if (!PixelFormat::HasAlpha(m_sharedImage->format))
return false;
if (!PixelFormat::IsCompressed(m_sharedImage->format))
{
const PixelFormatInfo& info = PixelFormat::GetInfo(m_sharedImage->format);
const UInt8* pixel = GetConstPixels();
Bitset<> workingBitset;
std::size_t pixelCount = m_sharedImage->width * m_sharedImage->height * ((m_sharedImage->type == ImageType_Cubemap) ? 6 : m_sharedImage->depth);
if (pixelCount == 0)
return false;
auto seq = workingBitset.Read(GetConstPixels(), info.bitsPerPixel);
do
{
workingBitset &= info.alphaMask;
if (workingBitset.Count() != info.alphaMask.Count()) //< Means that at least one bit of the alpha mask of this pixel is disabled
return true;
workingBitset.Clear();
workingBitset.Read(seq, info.bitsPerPixel);
}
while (--pixelCount > 0);
return false;
}
else
{
// FIXME: Currently, we assume the pixel format is already the right one
return true;
}
}
bool Image::IsValid() const
{
return m_sharedImage != &emptyImage;
@@ -1441,7 +1479,7 @@ namespace Nz
SharedImage::PixelContainer levels(m_sharedImage->levels.size());
for (unsigned int i = 0; i < levels.size(); ++i)
{
unsigned int size = GetMemoryUsage(i);
std::size_t size = GetMemoryUsage(i);
levels[i].reset(new UInt8[size]);
std::memcpy(levels[i].get(), m_sharedImage->levels[i].get(), size);
}

View File

@@ -75,6 +75,7 @@ namespace Nz
Font* SimpleTextDrawer::GetFont(std::size_t index) const
{
NazaraAssert(index == 0, "Font index out of range");
NazaraUnused(index);
return m_font;
}

View File

@@ -11,7 +11,7 @@
namespace Nz
{
SoftwareBuffer::SoftwareBuffer(Buffer* /*parent*/, BufferType type)
SoftwareBuffer::SoftwareBuffer(Buffer* /*parent*/, BufferType /*type*/)
{
}

View File

@@ -45,7 +45,7 @@ namespace Nz
bool VertexBuffer::Fill(const void* data, unsigned int startVertex, unsigned int length, bool forceDiscard)
{
unsigned int stride = m_vertexDeclaration->GetStride();
std::size_t stride = m_vertexDeclaration->GetStride();
return FillRaw(data, startVertex*stride, length*stride, forceDiscard);
}

View File

@@ -24,6 +24,11 @@ namespace Nz
width(0)
{
}
VideoMode::VideoMode(unsigned int w, unsigned int h) :
VideoMode(w, h, GetDesktopMode().bitsPerPixel)
{
}
VideoMode::VideoMode(unsigned int w, unsigned int h, UInt8 bpp) :
bitsPerPixel(bpp),

View File

@@ -83,6 +83,7 @@ namespace Nz
bool WindowImpl::Create(const VideoMode& mode, const String& title, UInt32 style)
{
bool async = (style & WindowStyle_Threaded) != 0;
bool fullscreen = (style & WindowStyle_Fullscreen) != 0;
DWORD win32Style, win32StyleEx;
unsigned int x, y;
@@ -147,19 +148,25 @@ namespace Nz
m_callback = 0;
#if NAZARA_UTILITY_THREADED_WINDOW
Mutex mutex;
ConditionVariable condition;
m_threadActive = true;
m_eventListener = true;
m_ownsWindow = true;
m_sizemove = false;
m_style = style;
// On attend que la fenêtre soit créée
mutex.Lock();
m_thread = Thread(WindowThread, &m_handle, win32StyleEx, title.GetWideString().data(), win32Style, x, y, width, height, this, &mutex, &condition);
condition.Wait(&mutex);
mutex.Unlock();
#else
m_handle = CreateWindowExW(win32StyleEx, className, title.GetWideString().data(), win32Style, x, y, width, height, nullptr, nullptr, GetModuleHandle(nullptr), this);
#endif
if (async)
{
Mutex mutex;
ConditionVariable condition;
m_threadActive = true;
// On attend que la fenêtre soit créée
mutex.Lock();
m_thread = Thread(WindowThread, &m_handle, win32StyleEx, title, win32Style, fullscreen, Rectui(x, y, width, height), this, &mutex, &condition);
condition.Wait(&mutex);
mutex.Unlock();
}
else
m_handle = CreateWindowExW(win32StyleEx, className, title.GetWideString().data(), win32Style, x, y, width, height, nullptr, nullptr, GetModuleHandle(nullptr), this);
if (!m_handle)
{
@@ -167,26 +174,8 @@ namespace Nz
return false;
}
if (fullscreen)
{
SetForegroundWindow(m_handle);
ShowWindow(m_handle, SW_SHOW);
}
m_eventListener = true;
m_ownsWindow = true;
#if !NAZARA_UTILITY_THREADED_WINDOW
m_sizemove = false;
#endif
m_style = style;
// Récupération de la position/taille de la fenêtre (Après sa création)
RECT clientRect, windowRect;
GetClientRect(m_handle, &clientRect);
GetWindowRect(m_handle, &windowRect);
m_position.Set(windowRect.left, windowRect.top);
m_size.Set(clientRect.right - clientRect.left, clientRect.bottom - clientRect.top);
if (!async)
PrepareWindow(fullscreen);
return true;
}
@@ -203,9 +192,7 @@ namespace Nz
m_eventListener = false;
m_ownsWindow = false;
#if !NAZARA_UTILITY_THREADED_WINDOW
m_sizemove = false;
#endif
m_style = RetrieveStyle(m_handle);
RECT clientRect, windowRect;
@@ -222,18 +209,21 @@ namespace Nz
{
if (m_ownsWindow)
{
#if NAZARA_UTILITY_THREADED_WINDOW
if (m_thread.IsJoinable())
if (m_style & WindowStyle_Threaded)
{
m_threadActive = false;
PostMessageW(m_handle, WM_NULL, 0, 0); // Pour réveiller le thread
if (m_thread.IsJoinable())
{
m_threadActive = false;
PostMessageW(m_handle, WM_NULL, 0, 0); // Wake up our thread
m_thread.Join();
m_thread.Join();
}
}
else
{
if (m_handle)
DestroyWindow(m_handle);
}
#else
if (m_handle)
DestroyWindow(m_handle);
#endif
}
else
SetEventListener(false);
@@ -280,7 +270,7 @@ namespace Nz
if (titleSize == 0)
return String();
titleSize++; // Caractère nul
titleSize++; // \0
std::unique_ptr<wchar_t[]> wTitle(new wchar_t[titleSize]);
GetWindowTextW(m_handle, wTitle.get(), titleSize);
@@ -525,7 +515,6 @@ namespace Nz
return true; // Afin que Windows ne ferme pas la fenêtre automatiquement
}
#if !NAZARA_UTILITY_THREADED_WINDOW
case WM_ENTERSIZEMOVE:
{
m_sizemove = true;
@@ -536,6 +525,10 @@ namespace Nz
{
m_sizemove = false;
// In case of threaded window, size and move events are not blocked
if (m_style & WindowStyle_Threaded)
break;
// On vérifie ce qui a changé
RECT clientRect, windowRect;
GetClientRect(m_handle, &clientRect);
@@ -565,7 +558,6 @@ namespace Nz
m_parent->PushEvent(event);
}
}
#endif
case WM_KEYDOWN:
case WM_SYSKEYDOWN:
@@ -789,15 +781,23 @@ namespace Nz
case WM_MOVE:
{
if (m_sizemove && (m_style & WindowStyle_Threaded) == 0)
break;
RECT windowRect;
GetWindowRect(m_handle, &windowRect);
WindowEvent event;
event.type = WindowEventType_Moved;
event.position.x = windowRect.left;
event.position.y = windowRect.top;
m_parent->PushEvent(event);
Vector2i position(windowRect.left, windowRect.top);
if (m_position != position)
{
m_position = position;
WindowEvent event;
event.type = WindowEventType_Moved;
event.position.x = position.x;
event.position.y = position.y;
m_parent->PushEvent(event);
}
break;
}
@@ -852,27 +852,26 @@ namespace Nz
case WM_SIZE:
{
#if NAZARA_UTILITY_THREADED_WINDOW
if (wParam != SIZE_MINIMIZED)
#else
if (!m_sizemove && wParam != SIZE_MINIMIZED)
#endif
{
RECT rect;
GetClientRect(m_handle, &rect);
if (m_sizemove && (m_style & WindowStyle_Threaded) == 0)
break;
Vector2ui size(rect.right-rect.left, rect.bottom-rect.top); // On récupère uniquement la taille de la zone client
if (m_size == size)
break;
if (wParam == SIZE_MINIMIZED)
break;
m_size = size;
RECT rect;
GetClientRect(m_handle, &rect);
WindowEvent event;
event.type = WindowEventType_Resized;
event.size.width = size.x;
event.size.height = size.y;
m_parent->PushEvent(event);
}
Vector2ui size(rect.right-rect.left, rect.bottom-rect.top); // On récupère uniquement la taille de la zone client
if (m_size == size)
break;
m_size = size;
WindowEvent event;
event.type = WindowEventType_Resized;
event.size.width = size.x;
event.size.height = size.y;
m_parent->PushEvent(event);
break;
}
@@ -963,6 +962,23 @@ namespace Nz
return false;
}
void WindowImpl::PrepareWindow(bool fullscreen)
{
if (fullscreen)
{
SetForegroundWindow(m_handle);
ShowWindow(m_handle, SW_SHOW);
}
// Cache window position/size after creation
RECT clientRect, windowRect;
GetClientRect(m_handle, &clientRect);
GetWindowRect(m_handle, &windowRect);
m_position.Set(windowRect.left, windowRect.top);
m_size.Set(clientRect.right - clientRect.left, clientRect.bottom - clientRect.top);
}
bool WindowImpl::Initialize()
{
// Nous devons faire un type Unicode pour que la fenêtre le soit également
@@ -1177,15 +1193,17 @@ namespace Nz
return style;
}
#if NAZARA_UTILITY_THREADED_WINDOW
void WindowImpl::WindowThread(HWND* handle, DWORD styleEx, const wchar_t* title, DWORD style, unsigned int x, unsigned int y, unsigned int width, unsigned int height, WindowImpl* window, Mutex* mutex, ConditionVariable* condition)
void WindowImpl::WindowThread(HWND* handle, DWORD styleEx, const String& title, DWORD style, bool fullscreen, const Rectui& dimensions, WindowImpl* window, Mutex* mutex, ConditionVariable* condition)
{
HWND& winHandle = *handle;
winHandle = CreateWindowExW(styleEx, className, title, style, x, y, width, height, nullptr, nullptr, GetModuleHandle(nullptr), window);
winHandle = CreateWindowExW(styleEx, className, title.GetWideString().data(), style, dimensions.x, dimensions.y, dimensions.width, dimensions.height, nullptr, nullptr, GetModuleHandle(nullptr), window);
if (winHandle)
window->PrepareWindow(fullscreen);
mutex->Lock();
condition->Signal();
mutex->Unlock(); // mutex et condition sont considérés invalides à partir d'ici
mutex->Unlock(); // mutex and condition may be destroyed after this line
if (!winHandle)
return;
@@ -1195,5 +1213,4 @@ namespace Nz
DestroyWindow(winHandle);
}
#endif
}

View File

@@ -12,6 +12,7 @@
#include <Nazara/Prerequesites.hpp>
#include <Nazara/Core/String.hpp>
#include <Nazara/Core/Thread.hpp>
#include <Nazara/Math/Rect.hpp>
#include <Nazara/Math/Vector2.hpp>
#include <Nazara/Utility/Config.hpp>
#include <Nazara/Utility/Keyboard.hpp>
@@ -22,10 +23,8 @@
namespace Nz
{
#if NAZARA_UTILITY_THREADED_WINDOW
class ConditionVariable;
class Mutex;
#endif
class Window;
#undef IsMinimized // Conflit avec la méthode du même nom
@@ -84,13 +83,12 @@ namespace Nz
private:
bool HandleMessage(HWND window, UINT message, WPARAM wParam, LPARAM lParam);
void PrepareWindow(bool fullscreen);
static Keyboard::Key ConvertVirtualKey(WPARAM key, LPARAM flags);
static LRESULT CALLBACK MessageHandler(HWND window, UINT message, WPARAM wParam, LPARAM lParam);
static UInt32 RetrieveStyle(HWND window);
#if NAZARA_UTILITY_THREADED_WINDOW
static void WindowThread(HWND* handle, DWORD styleEx, const wchar_t* title, DWORD style, unsigned int x, unsigned int y, unsigned int width, unsigned int height, WindowImpl* window, Mutex* mutex, ConditionVariable* condition);
#endif
static void WindowThread(HWND* handle, DWORD styleEx, const String& title, DWORD style, bool fullscreen, const Rectui& dimensions, WindowImpl* window, Mutex* mutex, ConditionVariable* condition);
HCURSOR m_cursor;
HWND m_handle;
@@ -101,21 +99,15 @@ namespace Nz
Vector2i m_mousePos;
Vector2i m_position;
Vector2ui m_size;
#if NAZARA_UTILITY_THREADED_WINDOW
Thread m_thread;
#endif
Window* m_parent;
bool m_eventListener;
bool m_keyRepeat;
bool m_mouseInside;
bool m_ownsWindow;
#if !NAZARA_UTILITY_THREADED_WINDOW
bool m_sizemove;
#endif
bool m_smoothScrolling;
#if NAZARA_UTILITY_THREADED_WINDOW
bool m_threadActive;
#endif
short m_scrolling;
};
}

View File

@@ -66,6 +66,8 @@ namespace Nz
else if (style & WindowStyle_Closable || style & WindowStyle_Resizable)
style |= WindowStyle_Titlebar;
m_asyncWindow = (style & WindowStyle_Threaded) != 0;
std::unique_ptr<WindowImpl> impl = std::make_unique<WindowImpl>(this);
if (!impl->Create(mode, title, style))
{
@@ -107,6 +109,7 @@ namespace Nz
{
Destroy();
m_asyncWindow = false;
m_impl = new WindowImpl(this);
if (!m_impl->Create(handle))
{
@@ -313,11 +316,8 @@ namespace Nz
}
#endif
#if NAZARA_UTILITY_THREADED_WINDOW
LockGuard lock(m_eventMutex);
#else
m_impl->ProcessEvents(false);
#endif
if (!m_asyncWindow)
m_impl->ProcessEvents(false);
if (!m_events.empty())
{
@@ -335,10 +335,19 @@ namespace Nz
void Window::ProcessEvents(bool block)
{
NazaraAssert(m_impl, "Window not created");
NazaraUnused(block);
#if !NAZARA_UTILITY_THREADED_WINDOW
m_impl->ProcessEvents(block);
#endif
if (!m_asyncWindow)
m_impl->ProcessEvents(block);
else
{
LockGuard eventLock(m_eventMutex);
for (const WindowEvent& event : m_pendingEvents)
HandleEvent(event);
m_pendingEvents.clear();
}
}
void Window::SetCursor(WindowCursor cursor)
@@ -383,25 +392,13 @@ namespace Nz
}
#endif
#if NAZARA_UTILITY_THREADED_WINDOW
m_impl->SetEventListener(listener);
if (!listener)
{
// On vide la pile des évènements
LockGuard lock(m_eventMutex);
// Empty the event queue
while (!m_events.empty())
m_events.pop();
}
#else
if (m_ownsWindow)
{
// Inutile de transmettre l'ordre dans ce cas-là
if (!listener)
NazaraError("A non-threaded window needs to listen to events");
}
else
m_impl->SetEventListener(listener);
#endif
}
void Window::SetFocus()
@@ -589,22 +586,11 @@ namespace Nz
}
#endif
#if NAZARA_UTILITY_THREADED_WINDOW
LockGuard lock(m_eventMutex);
if (m_events.empty())
if (!m_asyncWindow)
{
m_waitForEvent = true;
m_eventConditionMutex.Lock();
m_eventMutex.Unlock();
m_eventCondition.Wait(&m_eventConditionMutex);
m_eventMutex.Lock();
m_eventConditionMutex.Unlock();
m_waitForEvent = false;
}
while (m_events.empty())
m_impl->ProcessEvents(true);
if (!m_events.empty())
{
if (event)
*event = m_events.front();
@@ -612,19 +598,33 @@ namespace Nz
return true;
}
else
{
LockGuard lock(m_eventMutex);
return false;
#else
while (m_events.empty())
m_impl->ProcessEvents(true);
if (m_events.empty())
{
m_waitForEvent = true;
m_eventConditionMutex.Lock();
m_eventMutex.Unlock();
m_eventCondition.Wait(&m_eventConditionMutex);
m_eventMutex.Lock();
m_eventConditionMutex.Unlock();
m_waitForEvent = false;
}
if (event)
*event = m_events.front();
if (!m_events.empty())
{
if (event)
*event = m_events.front();
m_events.pop();
m_events.pop();
return true;
#endif
return true;
}
return false;
}
}
bool Window::OnWindowCreated()

View File

@@ -23,32 +23,32 @@ namespace Nz
switch (key)
{
// Lettres
case Keyboard::A: keysym = XK_A; break;
case Keyboard::B: keysym = XK_B; break;
case Keyboard::C: keysym = XK_C; break;
case Keyboard::D: keysym = XK_D; break;
case Keyboard::E: keysym = XK_E; break;
case Keyboard::F: keysym = XK_F; break;
case Keyboard::G: keysym = XK_G; break;
case Keyboard::H: keysym = XK_H; break;
case Keyboard::I: keysym = XK_I; break;
case Keyboard::J: keysym = XK_J; break;
case Keyboard::K: keysym = XK_K; break;
case Keyboard::L: keysym = XK_L; break;
case Keyboard::M: keysym = XK_M; break;
case Keyboard::N: keysym = XK_N; break;
case Keyboard::O: keysym = XK_O; break;
case Keyboard::P: keysym = XK_P; break;
case Keyboard::Q: keysym = XK_Q; break;
case Keyboard::R: keysym = XK_R; break;
case Keyboard::S: keysym = XK_S; break;
case Keyboard::T: keysym = XK_T; break;
case Keyboard::U: keysym = XK_U; break;
case Keyboard::V: keysym = XK_V; break;
case Keyboard::W: keysym = XK_W; break;
case Keyboard::X: keysym = XK_X; break;
case Keyboard::Y: keysym = XK_Y; break;
case Keyboard::Z: keysym = XK_Z; break;
case Keyboard::A: keysym = XK_a; break;
case Keyboard::B: keysym = XK_b; break;
case Keyboard::C: keysym = XK_c; break;
case Keyboard::D: keysym = XK_d; break;
case Keyboard::E: keysym = XK_e; break;
case Keyboard::F: keysym = XK_f; break;
case Keyboard::G: keysym = XK_g; break;
case Keyboard::H: keysym = XK_h; break;
case Keyboard::I: keysym = XK_i; break;
case Keyboard::J: keysym = XK_j; break;
case Keyboard::K: keysym = XK_k; break;
case Keyboard::L: keysym = XK_l; break;
case Keyboard::M: keysym = XK_m; break;
case Keyboard::N: keysym = XK_n; break;
case Keyboard::O: keysym = XK_o; break;
case Keyboard::P: keysym = XK_p; break;
case Keyboard::Q: keysym = XK_q; break;
case Keyboard::R: keysym = XK_r; break;
case Keyboard::S: keysym = XK_s; break;
case Keyboard::T: keysym = XK_t; break;
case Keyboard::U: keysym = XK_u; break;
case Keyboard::V: keysym = XK_v; break;
case Keyboard::W: keysym = XK_w; break;
case Keyboard::X: keysym = XK_x; break;
case Keyboard::Y: keysym = XK_y; break;
case Keyboard::Z: keysym = XK_z; break;
// Touches de fonction
case Keyboard::F1: keysym = XK_F1; break;
@@ -248,6 +248,8 @@ namespace Nz
xcb_keysym_t keySym = GetKeySym(key);
xcb_keycode_t realKeyCode = XCB_NO_SYMBOL;
xcb_key_symbols_t* keySymbols = X11::XCBKeySymbolsAlloc(connection);
if (!keySymbols)
{
@@ -261,6 +263,20 @@ namespace Nz
NazaraError("Failed to get key code");
return false;
}
// One keysym is associated with multiple key codes, we have to find the matching one ...
int i = 0;
while (keyCode.get()[i] != XCB_NO_SYMBOL)
{
xcb_keycode_t toTry = keyCode.get()[i];
if (keySym == xcb_key_symbols_get_keysym(keySymbols, toTry, 0))
{
realKeyCode = toTry;
break;
}
++i;
}
X11::XCBKeySymbolsFree(keySymbols);
ScopedXCB<xcb_generic_error_t> error(nullptr);
@@ -281,7 +297,7 @@ namespace Nz
}
// Check our keycode
return (keymap->keys[*keyCode.get() / 8] & (1 << (*keyCode.get() % 8))) != 0;
return (keymap->keys[realKeyCode / 8] & (1 << (realKeyCode % 8))) != 0;
}
bool EventImpl::IsMouseButtonPressed(Mouse::Button button)

View File

@@ -203,17 +203,18 @@ namespace Nz
// Set the window's name
SetTitle(title);
#if NAZARA_UTILITY_THREADED_WINDOW
Mutex mutex;
ConditionVariable condition;
m_threadActive = true;
if (m_style & WindowStyle_Threaded)
{
Mutex mutex;
ConditionVariable condition;
m_threadActive = true;
// We wait that thread is well launched
mutex.Lock();
m_thread = Thread(WindowThread, this, &mutex, &condition);
condition.Wait(&mutex);
mutex.Unlock();
#endif
// Wait until the thread is ready
mutex.Lock();
m_thread = Thread(WindowThread, this, &mutex, &condition);
condition.Wait(&mutex);
mutex.Unlock();
}
// Set fullscreen video mode and switch to fullscreen if necessary
if (fullscreen)
@@ -275,13 +276,15 @@ namespace Nz
{
if (m_ownsWindow)
{
#if NAZARA_UTILITY_THREADED_WINDOW
if (m_thread.IsJoinable())
if (m_style & WindowStyle_Threaded)
{
m_threadActive = false;
m_thread.Join();
if (m_thread.IsJoinable())
{
m_threadActive = false;
m_thread.Join();
}
}
#else
// Destroy the window
if (m_window && m_ownsWindow)
{
@@ -293,13 +296,11 @@ namespace Nz
xcb_destroy_window(
connection,
m_window
))
)
)))
NazaraError("Failed to destroy window");
xcb_flush(connection);
}
#endif
}
else
SetEventListener(false);
@@ -1247,7 +1248,7 @@ namespace Nz
char32_t codePoint = GetRepresentation(keysym);
// WTF if (std::isprint(codePoint, std::locale(""))) + handle combining ?
// if (std::isprint(codePoint)) Is not working ? + handle combining ?
{
WindowEvent event;
event.type = Nz::WindowEventType_TextEntered;
@@ -1405,7 +1406,7 @@ namespace Nz
// Catch reparent events to properly apply fullscreen on
// some "strange" window managers (like Awesome) which
// seem to make use of temporary parents during mapping
if (m_style & Nz::WindowStyle_Fullscreen)
if (m_style & WindowStyle_Fullscreen)
SwitchToFullscreen();
break;
@@ -1685,12 +1686,11 @@ namespace Nz
));
}
#if NAZARA_UTILITY_THREADED_WINDOW
void WindowImpl::WindowThread(WindowImpl* window, Mutex* mutex, ConditionVariable* condition)
{
mutex->Lock();
condition->Signal();
mutex->Unlock(); // mutex et condition sont considérés invalides à partir d'ici
mutex->Unlock(); // mutex and condition may be destroyed after this line
if (!window->m_window)
return;
@@ -1700,5 +1700,4 @@ namespace Nz
window->Destroy();
}
#endif
}

View File

@@ -20,10 +20,8 @@
namespace Nz
{
#if NAZARA_UTILITY_THREADED_WINDOW
class ConditionVariable;
class Mutex;
#endif
class Cursor;
class Icon;
class VideoMode;
@@ -103,25 +101,19 @@ namespace Nz
bool UpdateNormalHints();
void UpdateEventQueue(xcb_generic_event_t* event);
#if NAZARA_UTILITY_THREADED_WINDOW
static void WindowThread(WindowImpl* window, Mutex* mutex, ConditionVariable* condition);
#endif
xcb_window_t m_window;
xcb_screen_t* m_screen;
xcb_randr_get_screen_info_reply_t m_oldVideoMode;
xcb_size_hints_t m_size_hints;
UInt32 m_style;
#if NAZARA_UTILITY_THREADED_WINDOW
Thread m_thread;
#endif
UInt32 m_style;
Window* m_parent;
bool m_eventListener;
bool m_ownsWindow;
bool m_smoothScrolling;
#if NAZARA_UTILITY_THREADED_WINDOW
bool m_threadActive;
#endif
short m_scrolling;
Vector2i m_mousePos;
bool m_keyRepeat;