Merge branch 'NDK-Refactor' into NDK

Conflicts:
	examples/HardwareInfo/main.cpp
	include/Nazara/Renderer/Enums.hpp
	include/Nazara/Renderer/GpuQuery.hpp
	include/Nazara/Renderer/OpenGL.hpp
	include/Nazara/Renderer/RenderBuffer.hpp
	include/Nazara/Renderer/RenderTexture.hpp
	include/Nazara/Renderer/Texture.hpp
	src/Nazara/Graphics/AbstractRenderTechnique.cpp
	src/Nazara/Graphics/DeferredRenderTechnique.cpp
	src/Nazara/Graphics/Material.cpp
	src/Nazara/Graphics/SkyboxBackground.cpp
	src/Nazara/Renderer/GpuQuery.cpp
	src/Nazara/Renderer/OpenGL.cpp
	src/Nazara/Renderer/RenderBuffer.cpp
	src/Nazara/Renderer/RenderTexture.cpp
	src/Nazara/Renderer/Renderer.cpp
	src/Nazara/Renderer/Shader.cpp
	src/Nazara/Renderer/ShaderStage.cpp
	src/Nazara/Renderer/Texture.cpp

Former-commit-id: 2f1c7e9f9766f59ab83d9405856a1898ac4ab48f
This commit is contained in:
Lynix
2015-09-25 23:16:58 +02:00
613 changed files with 68051 additions and 66125 deletions

View File

@@ -8,429 +8,432 @@
#include <memory>
#include <Nazara/Physics/Debug.hpp>
namespace
namespace Nz
{
NzPhysGeomRef CreateGeomFromPrimitive(const NzPrimitive& primitive)
namespace
{
switch (primitive.type)
PhysGeomRef CreateGeomFromPrimitive(const Primitive& primitive)
{
case nzPrimitiveType_Box:
return NzBoxGeom::New(primitive.box.lengths, primitive.matrix);
switch (primitive.type)
{
case PrimitiveType_Box:
return BoxGeom::New(primitive.box.lengths, primitive.matrix);
case nzPrimitiveType_Cone:
return NzConeGeom::New(primitive.cone.length, primitive.cone.radius, primitive.matrix);
case PrimitiveType_Cone:
return ConeGeom::New(primitive.cone.length, primitive.cone.radius, primitive.matrix);
case nzPrimitiveType_Plane:
return NzBoxGeom::New(NzVector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
///TODO: PlaneGeom?
case PrimitiveType_Plane:
return BoxGeom::New(Vector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
///TODO: PlaneGeom?
case nzPrimitiveType_Sphere:
return NzSphereGeom::New(primitive.sphere.size, primitive.matrix.GetTranslation());
case PrimitiveType_Sphere:
return SphereGeom::New(primitive.sphere.size, primitive.matrix.GetTranslation());
}
NazaraError("Primitive type not handled (0x" + String::Number(primitive.type, 16) + ')');
return PhysGeomRef();
}
NazaraError("Primitive type not handled (0x" + NzString::Number(primitive.type, 16) + ')');
return NzPhysGeomRef();
}
}
NzPhysGeom::~NzPhysGeom()
{
for (auto& pair : m_handles)
NewtonDestroyCollision(pair.second);
}
NzBoxf NzPhysGeom::ComputeAABB(const NzVector3f& translation, const NzQuaternionf& rotation, const NzVector3f& scale) const
{
return ComputeAABB(NzMatrix4f::Transform(translation, rotation), scale);
}
NzBoxf NzPhysGeom::ComputeAABB(const NzMatrix4f& offsetMatrix, const NzVector3f& scale) const
{
NzVector3f min, max;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
PhysGeom::~PhysGeom()
{
NzPhysWorld world;
for (auto& pair : m_handles)
NewtonDestroyCollision(pair.second);
}
NewtonCollision* collision = CreateHandle(&world);
Boxf PhysGeom::ComputeAABB(const Vector3f& translation, const Quaternionf& rotation, const Vector3f& scale) const
{
return ComputeAABB(Matrix4f::Transform(translation, rotation), scale);
}
Boxf PhysGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f min, max;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
NewtonCollisionCalculateAABB(collision, offsetMatrix, min, max);
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonCollisionCalculateAABB(collision, offsetMatrix, min, max);
}
NewtonDestroyCollision(collision);
}
NewtonDestroyCollision(collision);
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, min, max);
return Boxf(scale * min, scale * max);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, min, max);
return NzBoxf(scale * min, scale * max);
}
void NzPhysGeom::ComputeInertialMatrix(NzVector3f* inertia, NzVector3f* center) const
{
float inertiaMatrix[3];
float origin[3];
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
void PhysGeom::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
NzPhysWorld world;
float inertiaMatrix[3];
float origin[3];
NewtonCollision* collision = CreateHandle(&world);
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
}
NewtonDestroyCollision(collision);
}
NewtonDestroyCollision(collision);
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
if (inertia)
inertia->Set(inertiaMatrix);
if (center)
center->Set(origin);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
if (inertia)
inertia->Set(inertiaMatrix);
if (center)
center->Set(origin);
}
float NzPhysGeom::ComputeVolume() const
{
float volume;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
float PhysGeom::ComputeVolume() const
{
NzPhysWorld world;
float volume;
NewtonCollision* collision = CreateHandle(&world);
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
volume = NewtonConvexCollisionCalculateVolume(collision);
PhysWorld world;
NewtonCollision* collision = CreateHandle(&world);
{
volume = NewtonConvexCollisionCalculateVolume(collision);
}
NewtonDestroyCollision(collision);
}
NewtonDestroyCollision(collision);
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
return volume;
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
return volume;
}
NewtonCollision* NzPhysGeom::GetHandle(NzPhysWorld* world) const
{
auto it = m_handles.find(world);
if (it == m_handles.end())
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
return it->second;
}
NzPhysGeomRef NzPhysGeom::Build(const NzPrimitiveList& list)
{
unsigned int primitiveCount = list.GetSize();
#if NAZARA_PHYSICS_SAFE
if (primitiveCount == 0)
NewtonCollision* PhysGeom::GetHandle(PhysWorld* world) const
{
NazaraError("PrimitiveList must have at least one primitive");
return nullptr;
auto it = m_handles.find(world);
if (it == m_handles.end())
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
return it->second;
}
#endif
if (primitiveCount > 1)
PhysGeomRef PhysGeom::Build(const PrimitiveList& list)
{
std::vector<NzPhysGeom*> geoms(primitiveCount);
unsigned int primitiveCount = list.GetSize();
for (unsigned int i = 0; i < primitiveCount; ++i)
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
return NzCompoundGeom::New(&geoms[0], primitiveCount);
}
else
return CreateGeomFromPrimitive(list.GetPrimitive(0));
}
NzPhysGeomLibrary::LibraryMap NzPhysGeom::s_library;
/********************************** BoxGeom **********************************/
NzBoxGeom::NzBoxGeom(const NzVector3f& lengths, const NzMatrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_lengths(lengths)
{
}
NzBoxGeom::NzBoxGeom(const NzVector3f& lengths, const NzVector3f& translation, const NzQuaternionf& rotation) :
NzBoxGeom(lengths, NzMatrix4f::Transform(translation, rotation))
{
}
NzBoxf NzBoxGeom::ComputeAABB(const NzMatrix4f& offsetMatrix, const NzVector3f& scale) const
{
NzVector3f halfLengths(m_lengths * 0.5f);
NzBoxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
aabb.Transform(offsetMatrix, true);
aabb *= scale;
return aabb;
}
float NzBoxGeom::ComputeVolume() const
{
return m_lengths.x * m_lengths.y * m_lengths.z;
}
NzVector3f NzBoxGeom::GetLengths() const
{
return m_lengths;
}
nzGeomType NzBoxGeom::GetType() const
{
return nzGeomType_Box;
}
NewtonCollision* NzBoxGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
}
/******************************** CapsuleGeom ********************************/
NzCapsuleGeom::NzCapsuleGeom(float length, float radius, const NzMatrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
NzCapsuleGeom::NzCapsuleGeom(float length, float radius, const NzVector3f& translation, const NzQuaternionf& rotation) :
NzCapsuleGeom(length, radius, NzMatrix4f::Transform(translation, rotation))
{
}
float NzCapsuleGeom::GetLength() const
{
return m_length;
}
float NzCapsuleGeom::GetRadius() const
{
return m_radius;
}
nzGeomType NzCapsuleGeom::GetType() const
{
return nzGeomType_Capsule;
}
NewtonCollision* NzCapsuleGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/******************************* CompoundGeom ********************************/
NzCompoundGeom::NzCompoundGeom(NzPhysGeom** geoms, unsigned int geomCount)
{
m_geoms.reserve(geomCount);
for (unsigned int i = 0; i < geomCount; ++i)
m_geoms.emplace_back(geoms[i]);
}
const std::vector<NzPhysGeomRef>& NzCompoundGeom::GetGeoms() const
{
return m_geoms;
}
nzGeomType NzCompoundGeom::GetType() const
{
return nzGeomType_Compound;
}
NewtonCollision* NzCompoundGeom::CreateHandle(NzPhysWorld* world) const
{
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
for (const NzPhysGeomRef& geom : m_geoms)
{
if (geom->GetType() == nzGeomType_Compound)
#if NAZARA_PHYSICS_SAFE
if (primitiveCount == 0)
{
NzCompoundGeom* compoundGeom = static_cast<NzCompoundGeom*>(geom.Get());
for (const NzPhysGeomRef& piece : compoundGeom->GetGeoms())
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
NazaraError("PrimitiveList must have at least one primitive");
return nullptr;
}
#endif
if (primitiveCount > 1)
{
std::vector<PhysGeom*> geoms(primitiveCount);
for (unsigned int i = 0; i < primitiveCount; ++i)
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
return CompoundGeom::New(&geoms[0], primitiveCount);
}
else
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
return CreateGeomFromPrimitive(list.GetPrimitive(0));
}
NewtonCompoundCollisionEndAddRemove(compoundCollision);
return compoundCollision;
}
PhysGeomLibrary::LibraryMap PhysGeom::s_library;
/********************************* ConeGeom **********************************/
/********************************** BoxGeom **********************************/
NzConeGeom::NzConeGeom(float length, float radius, const NzMatrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
NzConeGeom::NzConeGeom(float length, float radius, const NzVector3f& translation, const NzQuaternionf& rotation) :
NzConeGeom(length, radius, NzMatrix4f::Transform(translation, rotation))
{
}
float NzConeGeom::GetLength() const
{
return m_length;
}
float NzConeGeom::GetRadius() const
{
return m_radius;
}
nzGeomType NzConeGeom::GetType() const
{
return nzGeomType_Cone;
}
NewtonCollision* NzConeGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/****************************** ConvexHullGeom *******************************/
NzConvexHullGeom::NzConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const NzMatrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_tolerance(tolerance),
m_vertexStride(stride)
{
const nzUInt8* ptr = static_cast<const nzUInt8*>(vertices);
m_vertices.resize(vertexCount);
if (stride != sizeof(NzVector3f))
BoxGeom::BoxGeom(const Vector3f& lengths, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_lengths(lengths)
{
for (unsigned int i = 0; i < vertexCount; ++i)
m_vertices[i] = *reinterpret_cast<const NzVector3f*>(ptr + stride*i);
}
else // Fast path
std::memcpy(m_vertices.data(), vertices, vertexCount*sizeof(NzVector3f));
}
NzConvexHullGeom::NzConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const NzVector3f& translation, const NzQuaternionf& rotation) :
NzConvexHullGeom(vertices, vertexCount, stride, tolerance, NzMatrix4f::Transform(translation, rotation))
{
}
nzGeomType NzConvexHullGeom::GetType() const
{
return nzGeomType_Compound;
}
NewtonCollision* NzConvexHullGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateConvexHull(world->GetHandle(), m_vertices.size(), reinterpret_cast<const float*>(m_vertices.data()), sizeof(NzVector3f), m_tolerance, 0, m_matrix);
}
/******************************* CylinderGeom ********************************/
NzCylinderGeom::NzCylinderGeom(float length, float radius, const NzMatrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
NzCylinderGeom::NzCylinderGeom(float length, float radius, const NzVector3f& translation, const NzQuaternionf& rotation) :
NzCylinderGeom(length, radius, NzMatrix4f::Transform(translation, rotation))
{
}
float NzCylinderGeom::GetLength() const
{
return m_length;
}
float NzCylinderGeom::GetRadius() const
{
return m_radius;
}
nzGeomType NzCylinderGeom::GetType() const
{
return nzGeomType_Cylinder;
}
NewtonCollision* NzCylinderGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/********************************* NullGeom **********************************/
NzNullGeom::NzNullGeom()
{
}
nzGeomType NzNullGeom::GetType() const
{
return nzGeomType_Null;
}
void NzNullGeom::ComputeInertialMatrix(NzVector3f* inertia, NzVector3f* center) const
{
if (inertia)
inertia->MakeUnit();
if (center)
center->MakeZero();
}
NewtonCollision* NzNullGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateNull(world->GetHandle());
}
/******************************** SphereGeom *********************************/
NzSphereGeom::NzSphereGeom(float radius, const NzMatrix4f& transformMatrix) :
NzSphereGeom(radius, transformMatrix.GetTranslation())
{
}
NzSphereGeom::NzSphereGeom(float radius, const NzVector3f& translation, const NzQuaternionf& rotation) :
m_position(translation),
m_radius(radius)
{
NazaraUnused(rotation);
}
NzBoxf NzSphereGeom::ComputeAABB(const NzMatrix4f& offsetMatrix, const NzVector3f& scale) const
{
NzVector3f size(m_radius * NazaraSuffixMacro(M_SQRT3, f) * scale);
NzVector3f position(offsetMatrix.GetTranslation());
return NzBoxf(position - size, position + size);
}
float NzSphereGeom::ComputeVolume() const
{
return float(M_PI) * m_radius * m_radius * m_radius / 3.f;
}
float NzSphereGeom::GetRadius() const
{
return m_radius;
}
nzGeomType NzSphereGeom::GetType() const
{
return nzGeomType_Sphere;
}
NewtonCollision* NzSphereGeom::CreateHandle(NzPhysWorld* world) const
{
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, NzMatrix4f::Translate(m_position));
BoxGeom::BoxGeom(const Vector3f& lengths, const Vector3f& translation, const Quaternionf& rotation) :
BoxGeom(lengths, Matrix4f::Transform(translation, rotation))
{
}
Boxf BoxGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f halfLengths(m_lengths * 0.5f);
Boxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
aabb.Transform(offsetMatrix, true);
aabb *= scale;
return aabb;
}
float BoxGeom::ComputeVolume() const
{
return m_lengths.x * m_lengths.y * m_lengths.z;
}
Vector3f BoxGeom::GetLengths() const
{
return m_lengths;
}
GeomType BoxGeom::GetType() const
{
return GeomType_Box;
}
NewtonCollision* BoxGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
}
/******************************** CapsuleGeom ********************************/
CapsuleGeom::CapsuleGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CapsuleGeom::CapsuleGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CapsuleGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CapsuleGeom::GetLength() const
{
return m_length;
}
float CapsuleGeom::GetRadius() const
{
return m_radius;
}
GeomType CapsuleGeom::GetType() const
{
return GeomType_Capsule;
}
NewtonCollision* CapsuleGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/******************************* CompoundGeom ********************************/
CompoundGeom::CompoundGeom(PhysGeom** geoms, unsigned int geomCount)
{
m_geoms.reserve(geomCount);
for (unsigned int i = 0; i < geomCount; ++i)
m_geoms.emplace_back(geoms[i]);
}
const std::vector<PhysGeomRef>& CompoundGeom::GetGeoms() const
{
return m_geoms;
}
GeomType CompoundGeom::GetType() const
{
return GeomType_Compound;
}
NewtonCollision* CompoundGeom::CreateHandle(PhysWorld* world) const
{
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
for (const PhysGeomRef& geom : m_geoms)
{
if (geom->GetType() == GeomType_Compound)
{
CompoundGeom* compoundGeom = static_cast<CompoundGeom*>(geom.Get());
for (const PhysGeomRef& piece : compoundGeom->GetGeoms())
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
}
else
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
}
NewtonCompoundCollisionEndAddRemove(compoundCollision);
return compoundCollision;
}
/********************************* ConeGeom **********************************/
ConeGeom::ConeGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
ConeGeom::ConeGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
ConeGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float ConeGeom::GetLength() const
{
return m_length;
}
float ConeGeom::GetRadius() const
{
return m_radius;
}
GeomType ConeGeom::GetType() const
{
return GeomType_Cone;
}
NewtonCollision* ConeGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/****************************** ConvexHullGeom *******************************/
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_tolerance(tolerance),
m_vertexStride(stride)
{
const UInt8* ptr = static_cast<const UInt8*>(vertices);
m_vertices.resize(vertexCount);
if (stride != sizeof(Vector3f))
{
for (unsigned int i = 0; i < vertexCount; ++i)
m_vertices[i] = *reinterpret_cast<const Vector3f*>(ptr + stride*i);
}
else // Fast path
std::memcpy(m_vertices.data(), vertices, vertexCount*sizeof(Vector3f));
}
ConvexHullGeom::ConvexHullGeom(const void* vertices, unsigned int vertexCount, unsigned int stride, float tolerance, const Vector3f& translation, const Quaternionf& rotation) :
ConvexHullGeom(vertices, vertexCount, stride, tolerance, Matrix4f::Transform(translation, rotation))
{
}
GeomType ConvexHullGeom::GetType() const
{
return GeomType_Compound;
}
NewtonCollision* ConvexHullGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateConvexHull(world->GetHandle(), m_vertices.size(), reinterpret_cast<const float*>(m_vertices.data()), sizeof(Vector3f), m_tolerance, 0, m_matrix);
}
/******************************* CylinderGeom ********************************/
CylinderGeom::CylinderGeom(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CylinderGeom::CylinderGeom(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CylinderGeom(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CylinderGeom::GetLength() const
{
return m_length;
}
float CylinderGeom::GetRadius() const
{
return m_radius;
}
GeomType CylinderGeom::GetType() const
{
return GeomType_Cylinder;
}
NewtonCollision* CylinderGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/********************************* NullGeom **********************************/
NullGeom::NullGeom()
{
}
GeomType NullGeom::GetType() const
{
return GeomType_Null;
}
void NullGeom::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
if (inertia)
inertia->MakeUnit();
if (center)
center->MakeZero();
}
NewtonCollision* NullGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateNull(world->GetHandle());
}
/******************************** SphereGeom *********************************/
SphereGeom::SphereGeom(float radius, const Matrix4f& transformMatrix) :
SphereGeom(radius, transformMatrix.GetTranslation())
{
}
SphereGeom::SphereGeom(float radius, const Vector3f& translation, const Quaternionf& rotation) :
m_position(translation),
m_radius(radius)
{
NazaraUnused(rotation);
}
Boxf SphereGeom::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f size(m_radius * NazaraSuffixMacro(M_SQRT3, f) * scale);
Vector3f position(offsetMatrix.GetTranslation());
return Boxf(position - size, position + size);
}
float SphereGeom::ComputeVolume() const
{
return float(M_PI) * m_radius * m_radius * m_radius / 3.f;
}
float SphereGeom::GetRadius() const
{
return m_radius;
}
GeomType SphereGeom::GetType() const
{
return GeomType_Sphere;
}
NewtonCollision* SphereGeom::CreateHandle(PhysWorld* world) const
{
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, Matrix4f::Translate(m_position));
}
}

View File

@@ -10,356 +10,359 @@
#include <algorithm>
#include <Nazara/Physics/Debug.hpp>
NzPhysObject::NzPhysObject(NzPhysWorld* world, const NzMatrix4f& mat) :
NzPhysObject(world, NzNullGeom::New(), mat)
namespace Nz
{
}
NzPhysObject::NzPhysObject(NzPhysWorld* world, NzPhysGeomRef geom, const NzMatrix4f& mat) :
m_matrix(mat),
m_geom(std::move(geom)),
m_forceAccumulator(NzVector3f::Zero()),
m_torqueAccumulator(NzVector3f::Zero()),
m_world(world),
m_gravityFactor(1.f),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
if (!m_geom)
m_geom = NzNullGeom::New();
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
}
NzPhysObject::NzPhysObject(const NzPhysObject& object) :
m_matrix(object.m_matrix),
m_geom(object.m_geom),
m_forceAccumulator(NzVector3f::Zero()),
m_torqueAccumulator(NzVector3f::Zero()),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
SetMass(object.m_mass);
}
NzPhysObject::NzPhysObject(NzPhysObject&& object) :
m_matrix(std::move(object.m_matrix)),
m_geom(std::move(object.m_geom)),
m_forceAccumulator(std::move(object.m_forceAccumulator)),
m_torqueAccumulator(std::move(object.m_torqueAccumulator)),
m_body(object.m_body),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.m_mass)
{
object.m_body = nullptr;
}
NzPhysObject::~NzPhysObject()
{
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
}
void NzPhysObject::AddForce(const NzVector3f& force, nzCoordSys coordSys)
{
switch (coordSys)
PhysObject::PhysObject(PhysWorld* world, const Matrix4f& mat) :
PhysObject(world, NullGeom::New(), mat)
{
case nzCoordSys_Global:
m_forceAccumulator += force;
break;
case nzCoordSys_Local:
m_forceAccumulator += GetRotation() * force;
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::AddForce(const NzVector3f& force, const NzVector3f& point, nzCoordSys coordSys)
{
switch (coordSys)
PhysObject::PhysObject(PhysWorld* world, PhysGeomRef geom, const Matrix4f& mat) :
m_matrix(mat),
m_geom(std::move(geom)),
m_forceAccumulator(Vector3f::Zero()),
m_torqueAccumulator(Vector3f::Zero()),
m_world(world),
m_gravityFactor(1.f),
m_mass(0.f)
{
case nzCoordSys_Global:
m_forceAccumulator += force;
m_torqueAccumulator += NzVector3f::CrossProduct(point - GetMassCenter(nzCoordSys_Global), force);
break;
NazaraAssert(m_world, "Invalid world");
case nzCoordSys_Local:
return AddForce(m_matrix.Transform(force, 0.f), m_matrix.Transform(point), nzCoordSys_Global);
if (!m_geom)
m_geom = NullGeom::New();
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::AddTorque(const NzVector3f& torque, nzCoordSys coordSys)
{
switch (coordSys)
PhysObject::PhysObject(const PhysObject& object) :
m_matrix(object.m_matrix),
m_geom(object.m_geom),
m_forceAccumulator(Vector3f::Zero()),
m_torqueAccumulator(Vector3f::Zero()),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(0.f)
{
case nzCoordSys_Global:
m_torqueAccumulator += torque;
break;
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
case nzCoordSys_Local:
m_torqueAccumulator += m_matrix.Transform(torque, 0.f);
break;
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
SetMass(object.m_mass);
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::EnableAutoSleep(bool autoSleep)
{
NewtonBodySetAutoSleep(m_body, autoSleep);
}
NzBoxf NzPhysObject::GetAABB() const
{
NzVector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
return NzBoxf(min, max);
}
NzVector3f NzPhysObject::GetAngularVelocity() const
{
NzVector3f angularVelocity;
NewtonBodyGetOmega(m_body, angularVelocity);
return angularVelocity;
}
const NzPhysGeomRef& NzPhysObject::GetGeom() const
{
return m_geom;
}
float NzPhysObject::GetGravityFactor() const
{
return m_gravityFactor;
}
NewtonBody* NzPhysObject::GetHandle() const
{
return m_body;
}
float NzPhysObject::GetMass() const
{
return m_mass;
}
NzVector3f NzPhysObject::GetMassCenter(nzCoordSys coordSys) const
{
NzVector3f center;
NewtonBodyGetCentreOfMass(m_body, center);
switch (coordSys)
PhysObject::PhysObject(PhysObject&& object) :
m_matrix(std::move(object.m_matrix)),
m_geom(std::move(object.m_geom)),
m_forceAccumulator(std::move(object.m_forceAccumulator)),
m_torqueAccumulator(std::move(object.m_torqueAccumulator)),
m_body(object.m_body),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.m_mass)
{
case nzCoordSys_Global:
center = m_matrix.Transform(center);
break;
case nzCoordSys_Local:
break; // Aucune opération à effectuer sur le centre de rotation
object.m_body = nullptr;
}
return center;
}
const NzMatrix4f& NzPhysObject::GetMatrix() const
{
return m_matrix;
}
NzVector3f NzPhysObject::GetPosition() const
{
return m_matrix.GetTranslation();
}
NzQuaternionf NzPhysObject::GetRotation() const
{
return m_matrix.GetRotation();
}
NzVector3f NzPhysObject::GetVelocity() const
{
NzVector3f velocity;
NewtonBodyGetVelocity(m_body, velocity);
return velocity;
}
bool NzPhysObject::IsAutoSleepEnabled() const
{
return NewtonBodyGetAutoSleep(m_body) != 0;
}
bool NzPhysObject::IsMoveable() const
{
return m_mass > 0.f;
}
bool NzPhysObject::IsSleeping() const
{
return NewtonBodyGetSleepState(m_body) != 0;
}
void NzPhysObject::SetAngularVelocity(const NzVector3f& angularVelocity)
{
NewtonBodySetOmega(m_body, angularVelocity);
}
void NzPhysObject::SetGeom(NzPhysGeomRef geom)
{
if (m_geom.Get() != geom)
PhysObject::~PhysObject()
{
if (geom)
m_geom = geom;
else
m_geom = NzNullGeom::New();
NewtonBodySetCollision(m_body, m_geom->GetHandle(m_world));
}
}
void NzPhysObject::SetGravityFactor(float gravityFactor)
{
m_gravityFactor = gravityFactor;
}
void NzPhysObject::SetMass(float mass)
{
if (m_mass > 0.f)
{
float Ix, Iy, Iz;
NewtonBodyGetMassMatrix(m_body, &m_mass, &Ix, &Iy, &Iz);
float scale = mass/m_mass;
NewtonBodySetMassMatrix(m_body, mass, Ix*scale, Iy*scale, Iz*scale);
}
else if (mass > 0.f)
{
NzVector3f inertia, origin;
m_geom->ComputeInertialMatrix(&inertia, &origin);
NewtonBodySetCentreOfMass(m_body, &origin.x);
NewtonBodySetMassMatrix(m_body, mass, inertia.x*mass, inertia.y*mass, inertia.z*mass);
NewtonBodySetForceAndTorqueCallback(m_body, &ForceAndTorqueCallback);
NewtonBodySetTransformCallback(m_body, &TransformCallback);
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
}
m_mass = mass;
}
void NzPhysObject::SetMassCenter(const NzVector3f& center)
{
if (m_mass > 0.f)
NewtonBodySetCentreOfMass(m_body, center);
}
void NzPhysObject::SetPosition(const NzVector3f& position)
{
m_matrix.SetTranslation(position);
UpdateBody();
}
void NzPhysObject::SetRotation(const NzQuaternionf& rotation)
{
m_matrix.SetRotation(rotation);
UpdateBody();
}
void NzPhysObject::SetVelocity(const NzVector3f& velocity)
{
NewtonBodySetVelocity(m_body, velocity);
}
NzPhysObject& NzPhysObject::operator=(const NzPhysObject& object)
{
NzPhysObject physObj(object);
return operator=(std::move(physObj));
}
void NzPhysObject::UpdateBody()
{
NewtonBodySetMatrix(m_body, m_matrix);
if (NzNumberEquals(m_mass, 0.f))
void PhysObject::AddForce(const Vector3f& force, CoordSys coordSys)
{
// http://newtondynamics.com/wiki/index.php5?title=Can_i_dynamicly_move_a_TriMesh%3F
NzVector3f min, max;
switch (coordSys)
{
case CoordSys_Global:
m_forceAccumulator += force;
break;
case CoordSys_Local:
m_forceAccumulator += GetRotation() * force;
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::AddForce(const Vector3f& force, const Vector3f& point, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys_Global:
m_forceAccumulator += force;
m_torqueAccumulator += Vector3f::CrossProduct(point - GetMassCenter(CoordSys_Global), force);
break;
case CoordSys_Local:
return AddForce(m_matrix.Transform(force, 0.f), m_matrix.Transform(point), CoordSys_Global);
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::AddTorque(const Vector3f& torque, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys_Global:
m_torqueAccumulator += torque;
break;
case CoordSys_Local:
m_torqueAccumulator += m_matrix.Transform(torque, 0.f);
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::EnableAutoSleep(bool autoSleep)
{
NewtonBodySetAutoSleep(m_body, autoSleep);
}
Boxf PhysObject::GetAABB() const
{
Vector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
NewtonWorldForEachBodyInAABBDo(m_world->GetHandle(), min, max, [](const NewtonBody* const body, void* const userData)
{
NazaraUnused(userData);
NewtonBodySetSleepState(body, 0);
}, nullptr);
return Boxf(min, max);
}
/*for (std::set<PhysObjectListener*>::iterator it = m_listeners.begin(); it != m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(this);*/
}
NzPhysObject& NzPhysObject::operator=(NzPhysObject&& object)
{
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
m_body = object.m_body;
m_forceAccumulator = std::move(object.m_forceAccumulator);
m_geom = std::move(object.m_geom);
m_gravityFactor = object.m_gravityFactor;
m_mass = object.m_mass;
m_matrix = std::move(object.m_matrix);
m_torqueAccumulator = std::move(object.m_torqueAccumulator);
m_world = object.m_world;
object.m_body = nullptr;
return *this;
}
void NzPhysObject::ForceAndTorqueCallback(const NewtonBody* body, float timeStep, int threadIndex)
{
NazaraUnused(timeStep);
NazaraUnused(threadIndex);
NzPhysObject* me = static_cast<NzPhysObject*>(NewtonBodyGetUserData(body));
if (!NzNumberEquals(me->m_gravityFactor, 0.f))
me->m_forceAccumulator += me->m_world->GetGravity() * me->m_gravityFactor * me->m_mass;
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectApplyForce(me);*/
NewtonBodySetForce(body, me->m_forceAccumulator);
NewtonBodySetTorque(body, me->m_torqueAccumulator);
me->m_torqueAccumulator.Set(0.f);
me->m_forceAccumulator.Set(0.f);
///TODO: Implanter la force gyroscopique?
}
void NzPhysObject::TransformCallback(const NewtonBody* body, const float* matrix, int threadIndex)
{
NazaraUnused(threadIndex);
NzPhysObject* me = static_cast<NzPhysObject*>(NewtonBodyGetUserData(body));
me->m_matrix.Set(matrix);
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(me);*/
Vector3f PhysObject::GetAngularVelocity() const
{
Vector3f angularVelocity;
NewtonBodyGetOmega(m_body, angularVelocity);
return angularVelocity;
}
const PhysGeomRef& PhysObject::GetGeom() const
{
return m_geom;
}
float PhysObject::GetGravityFactor() const
{
return m_gravityFactor;
}
NewtonBody* PhysObject::GetHandle() const
{
return m_body;
}
float PhysObject::GetMass() const
{
return m_mass;
}
Vector3f PhysObject::GetMassCenter(CoordSys coordSys) const
{
Vector3f center;
NewtonBodyGetCentreOfMass(m_body, center);
switch (coordSys)
{
case CoordSys_Global:
center = m_matrix.Transform(center);
break;
case CoordSys_Local:
break; // Aucune opération à effectuer sur le centre de rotation
}
return center;
}
const Matrix4f& PhysObject::GetMatrix() const
{
return m_matrix;
}
Vector3f PhysObject::GetPosition() const
{
return m_matrix.GetTranslation();
}
Quaternionf PhysObject::GetRotation() const
{
return m_matrix.GetRotation();
}
Vector3f PhysObject::GetVelocity() const
{
Vector3f velocity;
NewtonBodyGetVelocity(m_body, velocity);
return velocity;
}
bool PhysObject::IsAutoSleepEnabled() const
{
return NewtonBodyGetAutoSleep(m_body) != 0;
}
bool PhysObject::IsMoveable() const
{
return m_mass > 0.f;
}
bool PhysObject::IsSleeping() const
{
return NewtonBodyGetSleepState(m_body) != 0;
}
void PhysObject::SetAngularVelocity(const Vector3f& angularVelocity)
{
NewtonBodySetOmega(m_body, angularVelocity);
}
void PhysObject::SetGeom(PhysGeomRef geom)
{
if (m_geom.Get() != geom)
{
if (geom)
m_geom = geom;
else
m_geom = NullGeom::New();
NewtonBodySetCollision(m_body, m_geom->GetHandle(m_world));
}
}
void PhysObject::SetGravityFactor(float gravityFactor)
{
m_gravityFactor = gravityFactor;
}
void PhysObject::SetMass(float mass)
{
if (m_mass > 0.f)
{
float Ix, Iy, Iz;
NewtonBodyGetMassMatrix(m_body, &m_mass, &Ix, &Iy, &Iz);
float scale = mass/m_mass;
NewtonBodySetMassMatrix(m_body, mass, Ix*scale, Iy*scale, Iz*scale);
}
else if (mass > 0.f)
{
Vector3f inertia, origin;
m_geom->ComputeInertialMatrix(&inertia, &origin);
NewtonBodySetCentreOfMass(m_body, &origin.x);
NewtonBodySetMassMatrix(m_body, mass, inertia.x*mass, inertia.y*mass, inertia.z*mass);
NewtonBodySetForceAndTorqueCallback(m_body, &ForceAndTorqueCallback);
NewtonBodySetTransformCallback(m_body, &TransformCallback);
}
m_mass = mass;
}
void PhysObject::SetMassCenter(const Vector3f& center)
{
if (m_mass > 0.f)
NewtonBodySetCentreOfMass(m_body, center);
}
void PhysObject::SetPosition(const Vector3f& position)
{
m_matrix.SetTranslation(position);
UpdateBody();
}
void PhysObject::SetRotation(const Quaternionf& rotation)
{
m_matrix.SetRotation(rotation);
UpdateBody();
}
void PhysObject::SetVelocity(const Vector3f& velocity)
{
NewtonBodySetVelocity(m_body, velocity);
}
PhysObject& PhysObject::operator=(const PhysObject& object)
{
PhysObject physObj(object);
return operator=(std::move(physObj));
}
void PhysObject::UpdateBody()
{
NewtonBodySetMatrix(m_body, m_matrix);
if (NumberEquals(m_mass, 0.f))
{
// http://newtondynamics.com/wiki/index.php5?title=Can_i_dynamicly_move_a_TriMesh%3F
Vector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
NewtonWorldForEachBodyInAABBDo(m_world->GetHandle(), min, max, [](const NewtonBody* const body, void* const userData)
{
NazaraUnused(userData);
NewtonBodySetSleepState(body, 0);
}, nullptr);
}
/*for (std::set<PhysObjectListener*>::iterator it = m_listeners.begin(); it != m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(this);*/
}
PhysObject& PhysObject::operator=(PhysObject&& object)
{
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
m_body = object.m_body;
m_forceAccumulator = std::move(object.m_forceAccumulator);
m_geom = std::move(object.m_geom);
m_gravityFactor = object.m_gravityFactor;
m_mass = object.m_mass;
m_matrix = std::move(object.m_matrix);
m_torqueAccumulator = std::move(object.m_torqueAccumulator);
m_world = object.m_world;
object.m_body = nullptr;
return *this;
}
void PhysObject::ForceAndTorqueCallback(const NewtonBody* body, float timeStep, int threadIndex)
{
NazaraUnused(timeStep);
NazaraUnused(threadIndex);
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
if (!NumberEquals(me->m_gravityFactor, 0.f))
me->m_forceAccumulator += me->m_world->GetGravity() * me->m_gravityFactor * me->m_mass;
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectApplyForce(me);*/
NewtonBodySetForce(body, me->m_forceAccumulator);
NewtonBodySetTorque(body, me->m_torqueAccumulator);
me->m_torqueAccumulator.Set(0.f);
me->m_forceAccumulator.Set(0.f);
///TODO: Implanter la force gyroscopique?
}
void PhysObject::TransformCallback(const NewtonBody* body, const float* matrix, int threadIndex)
{
NazaraUnused(threadIndex);
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
me->m_matrix.Set(matrix);
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(me);*/
}
}

View File

@@ -6,57 +6,60 @@
#include <Newton/Newton.h>
#include <Nazara/Physics/Debug.hpp>
NzPhysWorld::NzPhysWorld() :
m_gravity(NzVector3f::Zero()),
m_stepSize(0.005f),
m_timestepAccumulator(0.f)
namespace Nz
{
m_world = NewtonCreate();
NewtonWorldSetUserData(m_world, this);
}
NzPhysWorld::~NzPhysWorld()
{
NewtonDestroy(m_world);
}
NzVector3f NzPhysWorld::GetGravity() const
{
return m_gravity;
}
NewtonWorld* NzPhysWorld::GetHandle() const
{
return m_world;
}
float NzPhysWorld::GetStepSize() const
{
return m_stepSize;
}
void NzPhysWorld::SetGravity(const NzVector3f& gravity)
{
m_gravity = gravity;
}
void NzPhysWorld::SetSolverModel(unsigned int model)
{
NewtonSetSolverModel(m_world, model);
}
void NzPhysWorld::SetStepSize(float stepSize)
{
m_stepSize = stepSize;
}
void NzPhysWorld::Step(float timestep)
{
m_timestepAccumulator += timestep;
while (m_timestepAccumulator >= m_stepSize)
PhysWorld::PhysWorld() :
m_gravity(Vector3f::Zero()),
m_stepSize(0.005f),
m_timestepAccumulator(0.f)
{
NewtonUpdate(m_world, m_stepSize);
m_timestepAccumulator -= m_stepSize;
m_world = NewtonCreate();
NewtonWorldSetUserData(m_world, this);
}
PhysWorld::~PhysWorld()
{
NewtonDestroy(m_world);
}
Vector3f PhysWorld::GetGravity() const
{
return m_gravity;
}
NewtonWorld* PhysWorld::GetHandle() const
{
return m_world;
}
float PhysWorld::GetStepSize() const
{
return m_stepSize;
}
void PhysWorld::SetGravity(const Vector3f& gravity)
{
m_gravity = gravity;
}
void PhysWorld::SetSolverModel(unsigned int model)
{
NewtonSetSolverModel(m_world, model);
}
void PhysWorld::SetStepSize(float stepSize)
{
m_stepSize = stepSize;
}
void PhysWorld::Step(float timestep)
{
m_timestepAccumulator += timestep;
while (m_timestepAccumulator >= m_stepSize)
{
NewtonUpdate(m_world, m_stepSize);
m_timestepAccumulator -= m_stepSize;
}
}
}

View File

@@ -10,57 +10,60 @@
#include <Newton/Newton.h>
#include <Nazara/Physics/Debug.hpp>
unsigned int NzPhysics::GetMemoryUsed()
namespace Nz
{
return NewtonGetMemoryUsed();
}
bool NzPhysics::Initialize()
{
if (s_moduleReferenceCounter > 0)
unsigned int Physics::GetMemoryUsed()
{
return NewtonGetMemoryUsed();
}
bool Physics::Initialize()
{
if (s_moduleReferenceCounter > 0)
{
s_moduleReferenceCounter++;
return true; // Déjà initialisé
}
// Initialisation des dépendances
if (!Core::Initialize())
{
NazaraError("Failed to initialize core module");
return false;
}
s_moduleReferenceCounter++;
return true; // Déjà initialisé
// Initialisation du module
NazaraNotice("Initialized: Physics module");
return true;
}
// Initialisation des dépendances
if (!NzCore::Initialize())
bool Physics::IsInitialized()
{
NazaraError("Failed to initialize core module");
return false;
return s_moduleReferenceCounter != 0;
}
s_moduleReferenceCounter++;
// Initialisation du module
NazaraNotice("Initialized: Physics module");
return true;
}
bool NzPhysics::IsInitialized()
{
return s_moduleReferenceCounter != 0;
}
void NzPhysics::Uninitialize()
{
if (s_moduleReferenceCounter != 1)
void Physics::Uninitialize()
{
// Le module est soit encore utilisé, soit pas initialisé
if (s_moduleReferenceCounter > 1)
s_moduleReferenceCounter--;
if (s_moduleReferenceCounter != 1)
{
// Le module est soit encore utilisé, soit pas initialisé
if (s_moduleReferenceCounter > 1)
s_moduleReferenceCounter--;
return;
return;
}
// Libération du module
s_moduleReferenceCounter = 0;
NazaraNotice("Uninitialized: Physics module");
// Libération des dépendances
Core::Uninitialize();
}
// Libération du module
s_moduleReferenceCounter = 0;
NazaraNotice("Uninitialized: Physics module");
// Libération des dépendances
NzCore::Uninitialize();
unsigned int Physics::s_moduleReferenceCounter = 0;
}
unsigned int NzPhysics::s_moduleReferenceCounter = 0;