// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq // This file is part of the "Nazara Engine - Mathematics module" // For conditions of distribution and use, see copyright notice in Config.hpp #include #include #include #define F(a) static_cast(a) namespace Nz { /*! * \class Nz::Ray * \brief Math class that represents a ray or a straight line in 3D space * * This ray is meant to be understood like origin + lambda * direction, where lambda is a real positive parameter */ /*! * \brief Constructs a Ray object from its position and direction * * \param X X position * \param Y Y position * \param Z Z position * \param DirectionX X component of the vector direction * \param DirectionY Y component of the vector direction * \param DirectionY Y component of the vector direction */ template Ray::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ) { Set(X, Y, Z, DirectionX, DirectionY, DirectionZ); } /*! * \brief Constructs a Ray object from two Vector3 * * \param Origin Vector which represents the origin of the ray * \param Direction Vector which represents the direction of the ray */ template Ray::Ray(const Vector3& Origin, const Vector3& Direction) { Set(Origin, Direction); } /*! * \brief Constructs a Ray object from two arrays of three elements * * \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position * \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction */ template Ray::Ray(const T Origin[3], const T Direction[3]) { Set(Origin, Direction); } /*! * \brief Constructs a Ray object from the intersection of two planes * * \param planeOne First plane * \param planeTwo Second secant plane * * \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined * \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel */ template Ray::Ray(const Plane& planeOne, const Plane& planeTwo) { Set(planeOne, planeTwo); } /*! * \brief Constructs a Ray object from another type of Ray * * \param ray Ray of type U to convert to type T */ template template Ray::Ray(const Ray& ray) { Set(ray); } /*! * \brief Constructs a Ray object from two Vector3 from another type of Ray * * \param Origin Origin of type U to convert to type T * \param Direction Direction of type U to convert to type T */ template template Ray::Ray(const Vector3& Origin, const Vector3& Direction) { Set(Origin, Direction); } /*! * \brief Finds the closest point of the ray from point * \return The parameter where the point along this ray that is closest to the point provided * * \param point The point to get the closest approach to */ template T Ray::ClosestPoint(const Vector3& point) const { Vector3 delta = point - origin; T vsq = direction.GetSquaredLength(); T proj = delta.DotProduct(direction); return proj / vsq; } /*! * \brief Gets the point along the ray for this parameter * \return The point on the ray * * \param lambda Parameter to obtain a particular point on the ray */ template Vector3 Ray::GetPoint(T lambda) const { return origin + lambda * direction; } /*! * \brief Checks whether or not this ray intersects with the BoundingVolume * \return true if it intersects * * \param volume BoundingVolume to check * \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened * \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened * * \remark If BoundingVolume is Extend_Infinite, then closestHit and furthestHit are equal to 0 et infinity * \remark If BoundingVolume is Extend_Null, then closestHit and furthestHit are unchanged * \remark If enumeration of BoundingVolume is not defined in Extend, a NazaraError is thrown and closestHit and furthestHit are unchanged * * \see Intersect */ template bool Ray::Intersect(const BoundingVolume& volume, T* closestHit, T* furthestHit) const { switch (volume.extend) { case Extend_Finite: { if (Intersect(volume.aabb)) return Intersect(volume.obb, closestHit, furthestHit); return false; } case Extend_Infinite: { if (closestHit) *closestHit = F(0.0); if (furthestHit) *furthestHit = std::numeric_limits::infinity(); return true; } case Extend_Null: return false; } NazaraError("Invalid extend type (0x" + String::Number(volume.extend, 16) + ')'); return false; } /*! * \brief Checks whether or not this ray intersects with the Box * \return true if it intersects * * \param box Box to check * \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened * \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const Box& box, T* closestHit, T* furthestHit) const { // http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/ T tfirst = F(0.0); T tlast = std::numeric_limits::infinity(); Vector3 boxMin = box.GetMinimum(); Vector3 boxMax = box.GetMaximum(); for (unsigned int i = 0; i < 3; ++i) { T dir = direction[i]; T ori = origin[i]; T max = boxMax[i]; T min = boxMin[i]; if (NumberEquals(dir, F(0.0))) { if (ori < max && ori > min) continue; return false; } T tmin = (min - ori) / dir; T tmax = (max - ori) / dir; if (tmin > tmax) std::swap(tmin, tmax); if (tmax < tfirst || tmin > tlast) return false; tfirst = std::max(tfirst, tmin); tlast = std::min(tlast, tmax); } if (closestHit) *closestHit = tfirst; if (furthestHit) *furthestHit = tlast; return true; } /*! * \brief Checks whether or not this ray intersects with the transform Matrix4 applied to the Box * \return true if it intersects * * \param box Box to check * \param transform Matrix4 which represents the transformation of the box * \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened * \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const Box& box, const Matrix4& transform, T* closestHit, T* furthestHit) const { // http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/ // Intersection method from Real-Time Rendering and Essential Mathematics for Games T tMin = F(0.0); T tMax = std::numeric_limits::infinity(); Vector3 boxMin = box.GetMinimum(); Vector3 boxMax = box.GetMaximum(); Vector3 delta = transform.GetTranslation() - origin; // Test intersection with the 2 planes perpendicular to the OBB's X axis for (unsigned int i = 0; i < 3; ++i) { Vector3 axis(transform(0, i), transform(1, i), transform(2, i)); T e = axis.DotProduct(delta); T f = direction.DotProduct(axis); if (!NumberEquals(f, F(0.0))) { T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane // t1 and t2 now contain distances betwen ray origin and ray-plane intersections // We want t1 to represent the nearest intersection, // so if it's not the case, invert t1 and t2 if (t1 > t2) std::swap(t1, t2); // tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs) if (t2 < tMax) tMax = t2; // tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs) if (t1 > tMin) tMin = t1; // And here's the trick : // If "far" is closer than "near", then there is NO intersection. if (tMax < tMin) return false; } else // Rare case : the ray is almost parallel to the planes, so they don't have any "intersection" if (-e + boxMin[i] > F(0.0) || -e + boxMax[i] < F(0.0)) return false; } if (closestHit) *closestHit = tMin; if (furthestHit) *furthestHit = tMax; return true; } /*! * \brief Checks whether or not this ray intersects with the OrientedBox * \return true if it intersects * * \param orientedBox OrientedBox to check * \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened * \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const OrientedBox& orientedBox, T* closestHit, T* furthestHit) const { Vector3 corner = orientedBox.GetCorner(BoxCorner_FarLeftBottom); Vector3 oppositeCorner = orientedBox.GetCorner(BoxCorner_NearRightTop); Vector3 width = (orientedBox.GetCorner(BoxCorner_NearLeftBottom) - corner); Vector3 height = (orientedBox.GetCorner(BoxCorner_FarLeftTop) - corner); Vector3 depth = (orientedBox.GetCorner(BoxCorner_FarRightBottom) - corner); // Construction de la matrice de transformation de l'OBB Matrix4 matrix(width.x, height.x, depth.x, corner.x, width.y, height.y, depth.y, corner.y, width.z, height.z, depth.z, corner.z, F(0.0), F(0.0), F(0.0), F(1.0)); matrix.InverseAffine(); corner = matrix.Transform(corner); oppositeCorner = matrix.Transform(oppositeCorner); Box tmpBox(corner, oppositeCorner); Ray tmpRay(matrix.Transform(origin), matrix.Transform(direction)); return tmpRay.Intersect(tmpBox, closestHit, furthestHit); } /*! * \brief Checks whether or not this ray intersects with the plane * \return true if it intersects * * \param plane Plane to check * \param hit Optional argument to get the parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const Plane& plane, T* hit) const { T divisor = plane.normal.DotProduct(direction); if (NumberEquals(divisor, F(0.0))) return false; // Perpendicular T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d if (lambda < F(0.0)) return false; // The plane is 'behind' the ray. if (hit) *hit = lambda; return true; } /*! * \brief Checks whether or not this ray intersects with the sphere * \return true if it intersects * * \param sphere Sphere to check * \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened * \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const Sphere& sphere, T* closestHit, T* furthestHit) const { Vector3 sphereRay = sphere.GetPosition() - origin; T length = sphereRay.DotProduct(direction); if (length < F(0.0)) return false; // ray is perpendicular to the vector origin - center T squaredDistance = sphereRay.GetSquaredLength() - length * length; T squaredRadius = sphere.radius * sphere.radius; if (squaredDistance > squaredRadius) return false; // if the ray is further than the radius // Calcul des points d'intersection si besoin if (closestHit || furthestHit) { T deltaLambda = std::sqrt(squaredRadius - squaredDistance); if (closestHit) *closestHit = length - deltaLambda; if (furthestHit) *furthestHit = length + deltaLambda; } return true; } /*! * \brief Checks whether or not this ray intersects with the triangle * \return true if it intersects * * \param firstPoint First vertex of the triangle * \param secondPoint Second vertex of the triangle * \param thirdPoint Third vertex of the triangle * \param hit Optional argument to get the parameter where the intersection is only if it happened * * \see Intersect */ template bool Ray::Intersect(const Vector3& firstPoint, const Vector3& secondPoint, const Vector3& thirdPoint, T* hit) const { // https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm Vector3 firstEdge = secondPoint - firstPoint; Vector3 secondEdge = thirdPoint - firstPoint; Vector3 P = Vector3::CrossProduct(direction, secondEdge); const T divisor = firstEdge.DotProduct(P); if (NumberEquals(divisor, F(0.0))) return false; // Ray lies in plane of triangle Vector3 directionToPoint = origin - firstPoint; T u = directionToPoint.DotProduct(P) / divisor; if (u < F(0.0) || u > F(1.0)) return 0; // The intersection lies outside of the triangle Vector3 Q = Vector3::CrossProduct(directionToPoint, firstEdge); T v = directionToPoint.DotProduct(Q) / divisor; if (v < F(0.0) || u + v > F(1.0)) return 0; // The intersection lies outside of the triangle T t = secondEdge.DotProduct(Q) / divisor; if (t > F(0.0)) { if (hit) *hit = t; return true; } return false; } /*! * \brief Makes the ray with position (0, 0, 0) and direction (1, 0, 0) * \return A reference to this ray with position (0, 0, 0) and direction (1, 0, 0) * * \see AxisX */ template Ray& Ray::MakeAxisX() { return Set(Vector3::Zero(), Vector3::UnitX()); } /*! * \brief Makes the ray with position (0, 0, 0) and direction (0, 1, 0) * \return A reference to this ray with position (0, 0, 0) and direction (0, 1, 0) * * \see AxisY */ template Ray& Ray::MakeAxisY() { return Set(Vector3::Zero(), Vector3::UnitY()); } /*! * \brief Makes the ray with position (0, 0, 0) and direction (0, 0, 1) * \return A reference to this ray with position (0, 0, 0) and direction (0, 0, 1) * * \see AxisZ */ template Ray& Ray::MakeAxisZ() { return Set(Vector3::Zero(), Vector3::UnitZ()); } /*! * \brief Sets the components of the ray with position and direction * \return A reference to this ray * * \param X X position * \param Y Y position * \param Z Z position * \param DirectionX X component of the vector direction * \param DirectionY Y component of the vector direction * \param DirectionY Y component of the vector direction */ template Ray& Ray::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ) { direction.Set(directionX, directionY, directionZ); origin.Set(X, Y, Z); return *this; } /*! * \brief Sets the components of the ray with position and direction * \return A reference to this ray * * \param Origin Vector which represents the origin of the ray * \param Direction Vector which represents the direction of the ray */ template Ray& Ray::Set(const Vector3& Origin, const Vector3& Direction) { direction = Direction; origin = Origin; return *this; } /*! * \brief Sets the components of this ray from two arrays of three elements * \return A reference to this ray * * \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position * \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction */ template Ray& Ray::Set(const T Origin[3], const T Direction[3]) { direction.Set(Direction); origin.Set(Origin); return *this; } /*! * \brief Sets the components of this ray from the intersection of two planes * \return A reference to this ray * * \param planeOne First plane * \param planeTwo Second secant plane * * \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined * \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel */ template Ray& Ray::Set(const Plane& planeOne, const Plane& planeTwo) { T termOne = planeOne.normal.GetLength(); T termTwo = planeOne.normal.DotProduct(planeTwo.normal); T termFour = planeTwo.normal.GetLength(); T det = termOne * termFour - termTwo * termTwo; #if NAZARA_MATH_SAFE if (NumberEquals(det, F(0.0))) { String error("Planes are parallel"); NazaraError(error); throw std::domain_error(error); } #endif T invdet = F(1.0) / det; T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet; T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet; direction = planeOne.normal.CrossProduct(planeTwo.normal); origin = planeOne.normal * fc0 + planeTwo.normal * fc1; return *this; } /*! * \brief Sets the components of the ray with components from another * \return A reference to this ray * * \param ray The other ray */ template Ray& Ray::Set(const Ray& ray) { std::memcpy(this, &ray, sizeof(Ray)); return *this; } /*! * \brief Sets the components of the ray from another type of Ray * \return A reference to this ray * * \param ray Ray of type U to convert its components */ template template Ray& Ray::Set(const Ray& ray) { direction.Set(ray.direction); origin.Set(ray.origin); return *this; } /*! * \brief Sets the components of the ray from another type of Ray * \return A reference to this ray * * \param Origin Origin of type U to convert to type T * \param Direction Direction of type U to convert to type T */ template template Ray& Ray::Set(const Vector3& Origin, const Vector3& Direction) { direction.Set(Direction); origin.Set(Origin); return *this; } /*! * \brief Gives a string representation * \return A string representation of the object: "Ray(origin: Vector3(origin.x, origin.y, origin.z), direction: Vector3(direction.x, direction.y, direction.z))" */ template String Ray::ToString() const { StringStream ss; return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")"; } /*! * \brief Multiplies the direction ray with the lambda to get the point along the ray for this parameter * \return The point on the ray * * \param lambda Parameter to obtain a particular point on the ray * * \see GetPoint */ template Vector3 Ray::operator*(T lambda) const { return GetPoint(lambda); } /*! * \brief Compares the ray to other one * \return true if the ray are the same * * \param rec Other ray to compare with */ template bool Ray::operator==(const Ray& ray) const { return direction == ray.direction && origin == ray.origin; } /*! * \brief Compares the ray to other one * \return false if the ray are the same * * \param rec Other ray to compare with */ template bool Ray::operator!=(const Ray& ray) const { return !operator==(ray); } /*! * \brief Shorthand for the ray (0, 0, 0), (1, 0, 0) * \return A ray with position (0, 0, 0) and direction (1, 0, 0) * * \see MakeAxisX */ template Ray Ray::AxisX() { Ray axis; axis.MakeAxisX(); return axis; } /*! * \brief Shorthand for the ray (0, 0, 0), (0, 1, 0) * \return A ray with position (0, 0, 0) and direction (0, 1, 0) * * \see MakeAxisY */ template Ray Ray::AxisY() { Ray axis; axis.MakeAxisY(); return axis; } /*! * \brief Shorthand for the ray (0, 0, 0), (0, 0, 1) * \return A ray with position (0, 0, 0) and direction (0, 0, 1) * * \see MakeAxisZ */ template Ray Ray::AxisZ() { Ray axis; axis.MakeAxisZ(); return axis; } /*! * \brief Interpolates the ray to other one with a factor of interpolation * \return A new ray which is the interpolation of two rectangles * * \param from Initial ray * \param to Target ray * \param interpolation Factor of interpolation * * \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior * * \see Lerp */ template Ray Ray::Lerp(const Ray& from, const Ray& to, T interpolation) { return Ray(Nz::Vector3::Lerp(from.origin, to.origin, interpolation), Nz::Vector3::Lerp(from.direction, to.direction, interpolation)); } } /*! * \brief Output operator * \return The stream * * \param out The stream * \param ray The ray to output */ template std::ostream& operator<<(std::ostream& out, const Nz::Ray& ray) { return out << ray.ToString(); } #undef F #include