// Copyright (C) 2014 Jérôme Leclercq // This file is part of the "Nazara Engine - Graphics module" // For conditions of distribution and use, see copyright notice in Config.hpp #include #include #include #include #include #include #include #include #include namespace { enum ResourceType { ResourceType_Material, ResourceType_SkeletalMesh, ResourceType_StaticMesh }; } NzForwardRenderQueue::~NzForwardRenderQueue() { Clear(true); } void NzForwardRenderQueue::AddDrawable(const NzDrawable* drawable) { #if NAZARA_GRAPHICS_SAFE if (!drawable) { NazaraError("Invalid drawable"); return; } #endif otherDrawables.push_back(drawable); } void NzForwardRenderQueue::AddLight(const NzLight* light) { #if NAZARA_GRAPHICS_SAFE if (!light) { NazaraError("Invalid light"); return; } #endif switch (light->GetLightType()) { case nzLightType_Directional: directionalLights.push_back(light); break; case nzLightType_Point: case nzLightType_Spot: lights.push_back(light); break; #ifdef NAZARA_DEBUG default: NazaraError("Light type not handled (0x" + NzString::Number(light->GetLightType(), 16) + ')'); #endif } } void NzForwardRenderQueue::AddSprite(const NzSprite* sprite) { #if NAZARA_GRAPHICS_SAFE if (!sprite) { NazaraError("Invalid sprite"); return; } if (!sprite->IsDrawable()) { NazaraError("Sprite is not drawable"); return; } #endif sprites[sprite->GetMaterial()].push_back(sprite); } void NzForwardRenderQueue::AddSubMesh(const NzMaterial* material, const NzSubMesh* subMesh, const NzMatrix4f& transformMatrix) { switch (subMesh->GetAnimationType()) { case nzAnimationType_Skeletal: { ///TODO /* ** Il y a ici deux choses importantes à gérer: ** -Pour commencer, la mise en cache de std::vector suffisamment grands pour contenir le résultat du skinning ** l'objectif ici est d'éviter une allocation à chaque frame, donc de réutiliser un tableau existant ** Note: Il faudrait évaluer aussi la possibilité de conserver le buffer d'une frame à l'autre. ** Ceci permettant de ne pas skinner inutilement ce qui ne bouge pas, ou de skinner partiellement un mesh. ** Il faut cependant voir où stocker ce set de buffers, qui doit être communs à toutes les RQ d'une même scène. ** ** -Ensuite, la possibilité de regrouper les modèles skinnés identiques, une centaine de soldats marchant au pas ** ne devrait requérir qu'un skinning. */ NazaraError("Skeletal mesh not supported yet, sorry"); break; } case nzAnimationType_Static: { const NzStaticMesh* staticMesh = static_cast(subMesh); if (material->IsEnabled(nzRendererParameter_Blend)) { unsigned int index = transparentStaticModels.size(); transparentStaticModels.resize(index+1); const NzBoxf& aabb = staticMesh->GetAABB(); TransparentStaticModel& data = transparentStaticModels.back(); data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + aabb.GetCenter(), aabb.GetSquaredRadius()); data.material = material; data.mesh = staticMesh; data.transformMatrix = transformMatrix; transparentsModels.push_back(std::make_pair(index, true)); } else { auto pair = opaqueModels.insert(std::make_pair(material, BatchedModelContainer::mapped_type())); if (pair.second) material->AddResourceListener(this, ResourceType_Material); bool& used = std::get<0>(pair.first->second); bool& enableInstancing = std::get<1>(pair.first->second); used = true; auto& meshMap = std::get<3>(pair.first->second); auto pair2 = meshMap.insert(std::make_pair(staticMesh, BatchedStaticMeshContainer::mapped_type())); if (pair2.second) { staticMesh->AddResourceListener(this, ResourceType_StaticMesh); NzSpheref& squaredBoundingSphere = pair2.first->second.first; squaredBoundingSphere.Set(staticMesh->GetAABB().GetSquaredBoundingSphere()); ///TODO: Écouter le StaticMesh pour repérer tout changement de géométrie } std::vector& staticDataContainer = pair2.first->second.second; unsigned int instanceCount = staticDataContainer.size() + 1; // Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ? if (instanceCount >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT) enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau staticDataContainer.resize(instanceCount); StaticData& data = staticDataContainer.back(); data.transformMatrix = transformMatrix; } break; } } } void NzForwardRenderQueue::Clear(bool fully) { directionalLights.clear(); lights.clear(); otherDrawables.clear(); transparentsModels.clear(); transparentSkeletalModels.clear(); transparentStaticModels.clear(); if (fully) { for (auto& matIt : opaqueModels) { const NzMaterial* material = matIt.first; material->RemoveResourceListener(this); BatchedSkeletalMeshContainer& skeletalContainer = std::get<2>(matIt.second); for (auto& meshIt : skeletalContainer) { const NzSkeletalMesh* skeletalMesh = meshIt.first; skeletalMesh->RemoveResourceListener(this); } BatchedStaticMeshContainer& staticContainer = std::get<3>(matIt.second); for (auto& meshIt : staticContainer) { const NzStaticMesh* staticMesh = meshIt.first; staticMesh->RemoveResourceListener(this); } } opaqueModels.clear(); sprites.clear(); } } void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer) { struct TransparentModelComparator { bool operator()(const std::pair& index1, const std::pair& index2) { const NzSpheref& sphere1 = (index1.second) ? queue->transparentStaticModels[index1.first].boundingSphere : queue->transparentSkeletalModels[index1.first].boundingSphere; const NzSpheref& sphere2 = (index2.second) ? queue->transparentStaticModels[index2.first].boundingSphere : queue->transparentSkeletalModels[index2.first].boundingSphere; NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal); NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal); return nearPlane.Distance(position1) > nearPlane.Distance(position2); } NzForwardRenderQueue* queue; NzPlanef nearPlane; NzVector3f viewerNormal; }; TransparentModelComparator comparator {this, viewer->GetFrustum().GetPlane(nzFrustumPlane_Near), viewer->GetForward()}; std::sort(transparentsModels.begin(), transparentsModels.end(), comparator); } bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index) { switch (index) { case ResourceType_Material: opaqueModels.erase(static_cast(resource)); break; case ResourceType_SkeletalMesh: { for (auto& pair : opaqueModels) std::get<2>(pair.second).erase(static_cast(resource)); break; } case ResourceType_StaticMesh: { for (auto& pair : opaqueModels) std::get<3>(pair.second).erase(static_cast(resource)); break; } } return false; // Nous ne voulons plus recevoir d'évènement de cette ressource } void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int index) { // La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche // des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources) switch (index) { case ResourceType_Material: for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it) { if (it->first == resource) { opaqueModels.erase(it); break; } } break; case ResourceType_SkeletalMesh: { for (auto& pair : opaqueModels) { BatchedSkeletalMeshContainer& container = std::get<2>(pair.second); for (auto it = container.begin(); it != container.end(); ++it) { if (it->first == resource) { container.erase(it); break; } } } break; } case ResourceType_StaticMesh: { for (auto& pair : opaqueModels) { BatchedStaticMeshContainer& container = std::get<3 >(pair.second); for (auto it = container.begin(); it != container.end(); ++it) { if (it->first == resource) { container.erase(it); break; } } } break; } } } bool NzForwardRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2) { const NzUberShader* uberShader1 = mat1->GetShader(); const NzUberShader* uberShader2 = mat2->GetShader(); if (uberShader1 != uberShader2) return uberShader1 < uberShader2; const NzShader* shader1 = mat1->GetShaderInstance()->GetShader(); const NzShader* shader2 = mat2->GetShaderInstance()->GetShader(); if (shader1 != shader2) return shader1 < shader2; const NzTexture* diffuseMap1 = mat1->GetDiffuseMap(); const NzTexture* diffuseMap2 = mat2->GetDiffuseMap(); if (diffuseMap1 != diffuseMap2) return diffuseMap1 < diffuseMap2; return mat1 < mat2; } bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2) { const NzUberShader* uberShader1 = mat1->GetShader(); const NzUberShader* uberShader2 = mat2->GetShader(); if (uberShader1 != uberShader2) return uberShader1 < uberShader2; const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader(); const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader(); if (shader1 != shader2) return shader1 < shader2; const NzTexture* diffuseMap1 = mat1->GetDiffuseMap(); const NzTexture* diffuseMap2 = mat2->GetDiffuseMap(); if (diffuseMap1 != diffuseMap2) return diffuseMap1 < diffuseMap2; return mat1 < mat2; } bool NzForwardRenderQueue::BatchedSkeletalMeshComparator::operator()(const NzSkeletalMesh* subMesh1, const NzSkeletalMesh* subMesh2) { const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer(); const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr; const NzIndexBuffer* iBuffer2 = subMesh1->GetIndexBuffer(); const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr; if (buffer1 == buffer2) return subMesh1 < subMesh2; else return buffer2 < buffer2; } bool NzForwardRenderQueue::BatchedStaticMeshComparator::operator()(const NzStaticMesh* subMesh1, const NzStaticMesh* subMesh2) { const NzIndexBuffer* iBuffer1 = subMesh1->GetIndexBuffer(); const NzBuffer* buffer1 = (iBuffer1) ? iBuffer1->GetBuffer() : nullptr; const NzIndexBuffer* iBuffer2 = subMesh2->GetIndexBuffer(); const NzBuffer* buffer2 = (iBuffer2) ? iBuffer2->GetBuffer() : nullptr; if (buffer1 == buffer2) { buffer1 = subMesh1->GetVertexBuffer()->GetBuffer(); buffer2 = subMesh2->GetVertexBuffer()->GetBuffer(); if (buffer1 == buffer2) return subMesh1 < subMesh2; else return buffer1 < buffer2; } else return buffer1 < buffer2; }