// Copyright (C) 2013 Jérôme Leclercq // This file is part of the "Nazara Engine - Utility module" // For conditions of distribution and use, see copyright notice in Config.hpp /* * vcacheopt.h - Vertex Cache Optimizer * Copyright 2009 Michael Georgoulpoulos * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace { class IcoSphereBuilder { public: IcoSphereBuilder(const NzMatrix4f& matrix) : m_matrix(matrix) { } void Generate(float size, unsigned int recursionLevel, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { // Grandement inspiré de http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html const float t = (1.f + 2.236067f)/2.f; m_cache.clear(); m_size = size; m_vertices = vertices; m_vertexIndex = 0; // Sommets de base AddVertex({-1.f, t, 0.f}); AddVertex({ 1.f, t, 0.f}); AddVertex({-1.f, -t, 0.f}); AddVertex({ 1.f, -t, 0.f}); AddVertex({0.f, -1.f, t}); AddVertex({0.f, 1.f, t}); AddVertex({0.f, -1.f, -t}); AddVertex({0.f, 1.f, -t}); AddVertex({ t, 0.f, -1.f}); AddVertex({ t, 0.f, 1.f}); AddVertex({-t, 0.f, -1.f}); AddVertex({-t, 0.f, 1.f}); std::vector triangles; triangles.reserve(20 * NzIntegralPow(4, recursionLevel)); // Cinq triangles autour du premier point triangles.push_back({0, 11, 5}); triangles.push_back({0, 5, 1}); triangles.push_back({0, 1, 7}); triangles.push_back({0, 7, 10}); triangles.push_back({0, 10, 11}); // Cinq faces adjaçentes triangles.push_back({ 1, 5, 9}); triangles.push_back({ 5, 11, 4}); triangles.push_back({11, 10, 2}); triangles.push_back({10, 7, 6}); triangles.push_back({ 7, 1, 8}); // Cinq triangles autour du troisième point triangles.push_back({3, 9, 4}); triangles.push_back({3, 4, 2}); triangles.push_back({3, 2, 6}); triangles.push_back({3, 6, 8}); triangles.push_back({3, 8, 9}); // Cinq faces adjaçentes triangles.push_back({4, 9, 5}); triangles.push_back({2, 4, 11}); triangles.push_back({6, 2, 10}); triangles.push_back({8, 6, 7}); triangles.push_back({9, 8, 1}); // Et maintenant on affine la sphère for (unsigned int i = 0; i < recursionLevel; ++i) { for (NzVector3ui& triangle : triangles) { unsigned int a = GetMiddleVertex(triangle.x, triangle.y); unsigned int b = GetMiddleVertex(triangle.y, triangle.z); unsigned int c = GetMiddleVertex(triangle.z, triangle.x); triangles.push_back({triangle.x, a, c}); triangles.push_back({triangle.y, b, a}); triangles.push_back({triangle.z, c, b}); triangle.Set(a, b, c); // Réutilisation du triangle } } for (const NzVector3ui& triangle : triangles) { *indices++ = triangle.x + indexOffset; *indices++ = triangle.y + indexOffset; *indices++ = triangle.z + indexOffset; } if (aabb) { NzVector3f totalSize = size * m_matrix.GetScale(); aabb->Set(-totalSize, totalSize); } } unsigned int AddVertex(const NzVector3f& position) { NzMeshVertex& vertex = m_vertices[m_vertexIndex]; vertex.normal = NzVector3f::Normalize(m_matrix.Transform(position, 0.f)); vertex.position = m_matrix.Transform(m_size * position.GetNormal()); return m_vertexIndex++; } unsigned int GetMiddleVertex(unsigned int index1, unsigned int index2) { nzUInt64 key = (static_cast(std::min(index1, index2)) << 32) + static_cast(std::max(index1, index2)); auto it = m_cache.find(key); if (it != m_cache.end()) return it->second; NzVector3f middle = NzVector3f::Lerp(m_vertices[index1].position, m_vertices[index2].position, 0.5f); unsigned int index = AddVertex(middle); m_cache[key] = index; return index; } private: std::unordered_map m_cache; const NzMatrix4f& m_matrix; NzMeshVertex* m_vertices; float m_size; unsigned int m_vertexIndex; }; // Source: https://code.google.com/p/vcacne/ // Auteur: Michael Georgoulpoulos // Selon ce papier: http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html // Modifié pour les besoins du moteur ///TODO: Déplacer dans un fichier à part ? struct VertexCacheData { int position_in_cache = -1; float current_score = 0.f; int total_valence = 0; // toatl number of triangles using this vertex int remaining_valence = 0; // number of triangles using it but not yet rendered std::vector tri_indices; // indices to the indices that use this vertex bool calculated; // was the score calculated during this iteration? int FindTriangle(int tri) { for (unsigned int i = 0; i < tri_indices.size(); ++i) if (tri_indices[i] == tri) return i; return -1; } void MoveTriangleToEnd(int tri) { auto it = std::find(tri_indices.begin(), tri_indices.end(), tri); int t_ind = (it != tri_indices.end()) ? std::distance(tri_indices.begin(), it) : -1; NazaraAssert(t_ind >= 0, "Triangle not found"); tri_indices.erase(tri_indices.begin() + t_ind, tri_indices.begin() + t_ind + 1); tri_indices.push_back(tri); } }; struct TriangleCacheData { bool rendered = false; // has the triangle been added to the draw list yet? float current_score = 0.f; // sum of the score of its vertices int verts[3] = {-1, -1, -1}; // indices to the triangle's vertices bool calculated = false; // was the score calculated during this iteration? }; class VertexCache { public: VertexCache() { Clear(); } VertexCache(NzIndexIterator indices, unsigned int indexCount) { Clear(); for (unsigned int i = 0; i < indexCount; ++i) AddVertex(*indices++); } // the vertex will be placed on top // if the vertex didn't exist previewsly in // the cache, then miss count is incermented void AddVertex(unsigned int v) { int w = FindVertex(v); if (w >= 0) // remove the vertex from the cache (to reinsert it later on the top) RemoveVertex(w); else // the vertex was not found in the cache - increment misses m_misses++; // shift all vertices down (to make room for the new top vertex) for (int i=39; i>0; i--) m_cache[i] = m_cache[i-1]; // add the new vertex on top m_cache[0] = v; } void Clear() { for (int i=0; i<40; i++) m_cache[i] = -1; m_misses = 0; } int GetMissCount() { return m_misses; } int GetVertex(int which) { return m_cache[which]; } private: int FindVertex(int v) { for (int i = 0; i < 32; ++i) { if (m_cache[i] == v) return i; } return -1; } void RemoveVertex(int stack_index) { for (int i=stack_index; i<38; i++) m_cache[i] = m_cache[i+1]; } int m_cache[40]; int m_misses; // cache miss count }; class VertexCacheOptimizer { public: enum Result { Success, Fail_BadIndex, Fail_NoVerts }; VertexCacheOptimizer() { // initialize constants m_cacheDecayPower = 1.5f; m_lastTriScore = 0.75f; m_valenceBoostScale = 2.0f; m_valenceBoostPower = 0.5f; m_bestTri = 0; } // stores new indices in place Result Optimize(NzIndexIterator indices, unsigned int indexCount) { if (indexCount == 0) return Fail_NoVerts; // find vertex count int max_vert = *std::max_element(indices, indices + indexCount); Result res = Init(indices, indexCount, max_vert + 1); if (res != Success) return res; // iterate until Iterate returns false while (Iterate()); // rewrite optimized index list for (int index : m_drawList) { *indices++ = m_triangles[index].verts[0]; *indices++ = m_triangles[index].verts[1]; *indices++ = m_triangles[index].verts[2]; } return Success; } private: float CalculateVertexScore(unsigned int vertex) { VertexCacheData *v = &m_vertices[vertex]; if (v->remaining_valence <= 0) // No tri needs this vertex! return -1.0f; float ret = 0.0f; if (v->position_in_cache < 0) { // Vertex is not in FIFO cache - no score. } else { if (v->position_in_cache < 3) { // This vertex was used in the last triangle, // so it has a fixed score, whichever of the three // it's in. Otherwise, you can get very different // answers depending on whether you add // the triangle 1,2,3 or 3,1,2 - which is silly. ret = m_lastTriScore; } else { // Points for being high in the cache. const float Scaler = 1.0f / (32 - 3); ret = 1.0f - (v->position_in_cache - 3) * Scaler; ret = std::pow(ret, m_cacheDecayPower); } } // Bonus points for having a low number of tris still to // use the vert, so we get rid of lone verts quickly. float valence_boost = std::pow(static_cast(v->remaining_valence), -m_valenceBoostPower); ret += m_valenceBoostScale * valence_boost; return ret; } // returns the index of the triangle with the highest score // (or -1, if there aren't any active triangles) int FullScoreRecalculation() { // calculate score for all vertices for (unsigned int i = 0; i < m_vertices.size(); ++i) m_vertices[i].current_score = CalculateVertexScore(i); // calculate scores for all active triangles float max_score; int max_score_tri = -1; bool first_time = true; for (unsigned int i = 0; i < m_triangles.size(); ++i) { if (m_triangles[i].rendered) continue; // sum the score of all the triangle's vertices float sc = m_vertices[m_triangles[i].verts[0]].current_score + m_vertices[m_triangles[i].verts[1]].current_score + m_vertices[m_triangles[i].verts[2]].current_score; m_triangles[i].current_score = sc; if (first_time || sc > max_score) { first_time = false; max_score = sc; max_score_tri = i; } } return max_score_tri; } Result InitialPass() { for (unsigned int i = 0; i < m_indices.size(); ++i) { int index = m_indices[i]; if (index < 0 || index >= static_cast(m_vertices.size())) return Fail_BadIndex; m_vertices[index].total_valence++; m_vertices[index].remaining_valence++; m_vertices[index].tri_indices.push_back(i/3); } m_bestTri = FullScoreRecalculation(); return Success; } Result Init(NzIndexIterator indices, unsigned int indexCount, int vertex_count) { // clear the draw list m_drawList.clear(); // allocate and initialize vertices and triangles m_vertices.clear(); // Pour reconstruire tous les éléments m_vertices.resize(vertex_count); m_triangles.clear(); for (unsigned int i = 0; i < indexCount; i += 3) { TriangleCacheData dat; for (unsigned int j = 0; j < 3; ++j) dat.verts[j] = indices[i + j]; m_triangles.push_back(dat); } // copy the indices m_indices.resize(indexCount); for (unsigned int i = 0; i < indexCount; ++i) m_indices[i] = indices[i]; m_vertexCache.Clear(); m_bestTri = -1; return InitialPass(); } void AddTriangleToDrawList(int tri) { // reset all cache positions for (unsigned int i = 0; i < 32; ++i) { int ind = m_vertexCache.GetVertex(i); if (ind < 0) continue; m_vertices[ind].position_in_cache = -1; } TriangleCacheData* t = &m_triangles[tri]; if (t->rendered) return; // triangle is already in the draw list for (unsigned int i = 0; i < 3; ++i) { // add all triangle vertices to the cache m_vertexCache.AddVertex(t->verts[i]); VertexCacheData *v = &m_vertices[t->verts[i]]; // decrease remaining velence v->remaining_valence--; // move the added triangle to the end of the vertex's // triangle index list, so that the first 'remaining_valence' // triangles in the list are the active ones v->MoveTriangleToEnd(tri); } m_drawList.push_back(tri); t->rendered = true; // update all vertex cache positions for (unsigned int i = 0; i < 32; ++i) { int ind = m_vertexCache.GetVertex(i); if (ind < 0) continue; m_vertices[ind].position_in_cache = i; } } // Optimization: to avoid duplicate calculations durind the same iteration, // both vertices and triangles have a 'calculated' flag. This flag // must be cleared at the beginning of the iteration to all *active* triangles // that have one or more of their vertices currently cached, and all their // other vertices. // If there aren't any active triangles in the cache, the function returns // false and full recalculation is performed. bool CleanCalculationFlags() { bool ret = false; for (unsigned int i = 0; i < 32; ++i) { int vert = m_vertexCache.GetVertex(i); if (vert < 0) continue; VertexCacheData *v = &m_vertices[vert]; for (int j = 0; j < v->remaining_valence; j++) { TriangleCacheData *t = &m_triangles[v->tri_indices[j]]; // we actually found a triangle to process ret = true; // clear triangle flag t->calculated = false; // clear vertex flags for (unsigned int k = 0; k < 3; ++k) m_vertices[t->verts[k]].calculated = false; } } return ret; } void TriangleScoreRecalculation(int tri) { TriangleCacheData* t = &m_triangles[tri]; // calculate vertex scores float sum = 0.0f; for (unsigned int i = 0; i < 3; ++i) { VertexCacheData *v = &m_vertices[t->verts[i]]; float sc = v->current_score; if (!v->calculated) { sc = CalculateVertexScore(t->verts[i]); } v->current_score = sc; v->calculated = true; sum += sc; } t->current_score = sum; t->calculated = true; } int PartialScoreRecalculation() { // iterate through all the vertices of the cache bool first_time = true; float max_score; int max_score_tri = -1; for (unsigned int i = 0; i < 32; ++i) { int vert = m_vertexCache.GetVertex(i); if (vert < 0) continue; VertexCacheData *v = &m_vertices[vert]; // iterate through all *active* triangles of this vertex for (int j=0; jremaining_valence; j++) { int tri = v->tri_indices[j]; TriangleCacheData *t = &m_triangles[tri]; if (!t->calculated) // calculate triangle score TriangleScoreRecalculation(tri); float sc = t->current_score; // we actually found a triangle to process if (first_time || sc > max_score) { first_time = false; max_score = sc; max_score_tri = tri; } } } return max_score_tri; } // returns true while there are more steps to take // false when optimization is complete bool Iterate() { if (m_drawList.size() == m_triangles.size()) return false; // add the selected triangle to the draw list AddTriangleToDrawList(m_bestTri); // recalculate vertex and triangle scores and // select the best triangle for the next iteration m_bestTri = (CleanCalculationFlags()) ? PartialScoreRecalculation() : FullScoreRecalculation(); return true; } std::vector m_vertices; std::vector m_triangles; std::vector m_indices; int m_bestTri; // the next triangle to add to the render list VertexCache m_vertexCache; std::vector m_drawList; // CalculateVertexScore constants float m_cacheDecayPower; float m_lastTriScore; float m_valenceBoostScale; float m_valenceBoostPower; }; } /**********************************NzCompute**********************************/ void NzComputeBoxIndexVertexCount(const NzVector3ui& subdivision, unsigned int* indexCount, unsigned int* vertexCount) { unsigned int xIndexCount, yIndexCount, zIndexCount; unsigned int xVertexCount, yVertexCount, zVertexCount; NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.y, subdivision.z), &xIndexCount, &xVertexCount); NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.z), &yIndexCount, &yVertexCount); NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.y), &zIndexCount, &zVertexCount); if (indexCount) *indexCount = xIndexCount*2 + yIndexCount*2 + zIndexCount*2; if (vertexCount) *vertexCount = xVertexCount*2 + yVertexCount*2 + zVertexCount*2; } unsigned int NzComputeCacheMissCount(NzIndexIterator indices, unsigned int indexCount) { VertexCache cache(indices, indexCount); return cache.GetMissCount(); } void NzComputeCubicSphereIndexVertexCount(unsigned int subdivision, unsigned int* indexCount, unsigned int* vertexCount) { // Comme tous nos plans sont identiques, on peut optimiser un peu NzComputePlaneIndexVertexCount(NzVector2ui(subdivision), indexCount, vertexCount); if (indexCount) *indexCount *= 6; if (vertexCount) *vertexCount *= 6; } void NzComputeIcoSphereIndexVertexCount(unsigned int recursionLevel, unsigned int* indexCount, unsigned int* vertexCount) { if (indexCount) *indexCount = 3 * 20 * NzIntegralPow(4, recursionLevel); if (vertexCount) *vertexCount = NzIntegralPow(4, recursionLevel)*10 + 2; } void NzComputePlaneIndexVertexCount(const NzVector2ui& subdivision, unsigned int* indexCount, unsigned int* vertexCount) { // Le nombre de faces appartenant à un axe est équivalent à 2 exposant la subdivision (1,2,4,8,16,32,...) unsigned int horizontalFaceCount = (1 << subdivision.x); unsigned int verticalFaceCount = (1 << subdivision.y); // Et le nombre de sommets est ce nombre ajouté de 1 (2,3,5,9,17,33,...) unsigned int horizontalVertexCount = horizontalFaceCount + 1; unsigned int verticalVertexCount = verticalFaceCount + 1; if (indexCount) *indexCount = horizontalFaceCount*verticalFaceCount*6; // Six indices sont nécessaires pour décrire une face (deux triangles) if (vertexCount) *vertexCount = horizontalVertexCount*verticalVertexCount; } void NzComputeUvSphereIndexVertexCount(unsigned int sliceCount, unsigned int stackCount, unsigned int* indexCount, unsigned int* vertexCount) { if (indexCount) *indexCount = (sliceCount-1) * (stackCount-1) * 6; if (vertexCount) *vertexCount = sliceCount * stackCount; } /**********************************NzGenerate*********************************/ void NzGenerateBox(const NzVector3f& lengths, const NzVector3ui& subdivision, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { unsigned int xIndexCount, yIndexCount, zIndexCount; unsigned int xVertexCount, yVertexCount, zVertexCount; NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.y, subdivision.z), &xIndexCount, &xVertexCount); NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.z), &yIndexCount, &yVertexCount); NzComputePlaneIndexVertexCount(NzVector2ui(subdivision.x, subdivision.y), &zIndexCount, &zVertexCount); NzMeshVertex* oldVertices = vertices; NzMatrix4f transform; NzVector3f halfLengths = lengths/2.f; // Face +X transform.MakeTransform(NzVector3f::UnitX() * halfLengths.x, NzEulerAnglesf(-90.f, 0.f, -90.f)); NzGeneratePlane(NzVector2ui(subdivision.z, subdivision.y), NzVector2f(lengths.z, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += xVertexCount; indices += xIndexCount; vertices += xVertexCount; // Face +Y transform.MakeTransform(NzVector3f::UnitY() * halfLengths.y, NzEulerAnglesf(0.f, 0.f, 0.f)); NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.z), NzVector2f(lengths.x, lengths.z), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += yVertexCount; indices += yIndexCount; vertices += yVertexCount; // Face +Z transform.MakeTransform(NzVector3f::UnitZ() * halfLengths.z, NzEulerAnglesf(-90.f, 90.f, 90.f)); NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.y), NzVector2f(lengths.x, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += zVertexCount; indices += zIndexCount; vertices += zVertexCount; // Face -X transform.MakeTransform(-NzVector3f::UnitX() * halfLengths.x, NzEulerAnglesf(-90.f, 0.f, 90.f)); NzGeneratePlane(NzVector2ui(subdivision.z, subdivision.y), NzVector2f(lengths.z, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += xVertexCount; indices += xIndexCount; vertices += xVertexCount; // Face -Y transform.MakeTransform(-NzVector3f::UnitY() * halfLengths.y, NzEulerAnglesf(0.f, 0.f, 180.f)); NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.z), NzVector2f(lengths.x, lengths.z), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += yVertexCount; indices += yIndexCount; vertices += yVertexCount; // Face -Z transform.MakeTransform(-NzVector3f::UnitZ() * halfLengths.z, NzEulerAnglesf(-90.f, -90.f, 90.f)); NzGeneratePlane(NzVector2ui(subdivision.x, subdivision.y), NzVector2f(lengths.x, lengths.y), transform, textureCoords, vertices, indices, nullptr, indexOffset); indexOffset += zVertexCount; indices += zIndexCount; vertices += zVertexCount; NzTransformVertices(oldVertices, vertices-oldVertices, matrix); if (aabb) { aabb->Set(-halfLengths, halfLengths); aabb->Transform(matrix, 0.f); } } void NzGenerateCubicSphere(float size, unsigned int subdivision, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { unsigned int vertexCount; NzComputeBoxIndexVertexCount(NzVector3ui(subdivision), nullptr, &vertexCount); // On envoie une matrice identité de sorte à ce que la boîte ne subisse aucune transformation (rendant plus facile l'étape suivante) NzGenerateBox(NzVector3f(size, size, size), NzVector3ui(subdivision), NzMatrix4f::Identity(), textureCoords, vertices, indices, nullptr, indexOffset); if (aabb) { NzVector3f totalSize = size * matrix.GetScale(); aabb->Set(-totalSize, totalSize); } for (unsigned int i = 0; i < vertexCount; ++i) { vertices->normal = vertices->position.GetNormal(); vertices->position = matrix.Transform(size * vertices->normal); //vertices->tangent = ??? vertices++; } } void NzGenerateIcoSphere(float size, unsigned int recursionLevel, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { IcoSphereBuilder builder(matrix); builder.Generate(size, recursionLevel, textureCoords, vertices, indices, aabb, indexOffset); } void NzGeneratePlane(const NzVector2ui& subdivision, const NzVector2f& size, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { // Pour plus de facilité, on va construire notre plan en considérant que la normale est de 0,1,0 // Et appliquer ensuite une matrice "finissant le travail" // Le nombre de faces appartenant à un axe est équivalent à 2 exposant la subdivision (1,2,4,8,16,32,...) unsigned int horizontalFaceCount = (1 << subdivision.x); unsigned int verticalFaceCount = (1 << subdivision.y); // Et le nombre de sommets est ce nombre ajouté de 1 (2,3,5,9,17,33,...) unsigned int horizontalVertexCount = horizontalFaceCount + 1; unsigned int verticalVertexCount = verticalFaceCount + 1; NzVector3f normal(NzVector3f::UnitY()); normal = matrix.Transform(normal, 0.f); normal.Normalize(); NzVector3f tangent(1.f, 1.f, 0.f); tangent = matrix.Transform(tangent, 0.f); tangent.Normalize(); float halfSizeX = size.x / 2.f; float halfSizeY = size.y / 2.f; float invHorizontalVertexCount = 1.f/(horizontalVertexCount-1); float invVerticalVertexCount = 1.f/(verticalVertexCount-1); for (unsigned int x = 0; x < horizontalVertexCount; ++x) { for (unsigned int y = 0; y < verticalVertexCount; ++y) { NzVector3f localPos((2.f*x*invHorizontalVertexCount - 1.f) * halfSizeX, 0.f, (2.f*y*invVerticalVertexCount - 1.f) * halfSizeY); vertices->position = matrix * localPos; vertices->uv.Set(textureCoords.x + x*invHorizontalVertexCount*textureCoords.width, textureCoords.y + y*invVerticalVertexCount*textureCoords.height); vertices->normal = normal; vertices->tangent = tangent; vertices++; if (x != horizontalVertexCount-1 && y != verticalVertexCount-1) { *indices++ = (x+0)*verticalVertexCount + y + 0 + indexOffset; *indices++ = (x+0)*verticalVertexCount + y + 1 + indexOffset; *indices++ = (x+1)*verticalVertexCount + y + 0 + indexOffset; *indices++ = (x+1)*verticalVertexCount + y + 0 + indexOffset; *indices++ = (x+0)*verticalVertexCount + y + 1 + indexOffset; *indices++ = (x+1)*verticalVertexCount + y + 1 + indexOffset; } } } if (aabb) aabb->Set(matrix.Transform(NzVector3f(-halfSizeX, 0.f, -halfSizeY), 0.f), matrix.Transform(NzVector3f(halfSizeX, 0.f, halfSizeY), 0.f)); } void NzGenerateUvSphere(float size, unsigned int sliceCount, unsigned int stackCount, const NzMatrix4f& matrix, const NzRectf& textureCoords, NzMeshVertex* vertices, NzIndexIterator indices, NzBoxf* aabb, unsigned int indexOffset) { // http://stackoverflow.com/questions/14080932/implementing-opengl-sphere-example-code float invSliceCount = 1.f / (sliceCount-1); float invStackCount = 1.f / (stackCount-1); const float pi = static_cast(M_PI); // Pour éviter toute promotion en double const float pi2 = pi * 2.f; const float pi_2 = pi / 2.f; for (unsigned int stack = 0; stack < stackCount; ++stack) { float stackVal = stack * invStackCount; float stackValPi = stackVal * pi; float sinStackValPi = std::sin(stackValPi); for (unsigned int slice = 0; slice < sliceCount; ++slice) { float sliceVal = slice * invSliceCount; float sliceValPi2 = sliceVal * pi2; NzVector3f normal; normal.y = std::sin(-pi_2 + stackValPi); normal.x = std::cos(sliceValPi2) * sinStackValPi; normal.z = std::sin(sliceValPi2) * sinStackValPi; vertices->position = matrix.Transform(size * normal); vertices->normal = matrix.Transform(normal, 0.f); vertices->uv.Set(textureCoords.x + textureCoords.width*(1.f - sliceVal), textureCoords.y + textureCoords.height*stackVal); vertices++; if (stack != stackCount-1 && slice != sliceCount-1) { *indices++ = (stack+0)*sliceCount + (slice+0) + indexOffset; *indices++ = (stack+1)*sliceCount + (slice+0) + indexOffset; *indices++ = (stack+0)*sliceCount + (slice+1) + indexOffset; *indices++ = (stack+0)*sliceCount + (slice+1) + indexOffset; *indices++ = (stack+1)*sliceCount + (slice+0) + indexOffset; *indices++ = (stack+1)*sliceCount + (slice+1) + indexOffset; } } } if (aabb) { NzVector3f totalSize = size * matrix.GetScale(); aabb->Set(-totalSize, totalSize); } } /************************************Autres***********************************/ void NzOptimizeIndices(NzIndexIterator indices, unsigned int indexCount) { VertexCacheOptimizer optimizer; if (optimizer.Optimize(indices, indexCount) != VertexCacheOptimizer::Success) NazaraWarning("Indices optimizer failed"); }