// Copyright (C) 2012 Rémi Bèges // This file is part of the "Nazara Engine". // For conditions of distribution and use, see copyright notice in Config.hpp #include #include #include template NzSimplex4D::NzSimplex4D() { SkewCoeff4D = (sqrt(5.) - 1.)/4.; UnskewCoeff4D = (5. - sqrt(5.))/20.; int lookupTemp4D[][4] = { {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0} }; for(int i(0) ; i < 64 ; ++i) for(int j(0) ; j < 4 ; ++j) lookupTable4D[i][j] = lookupTemp4D[i][j]; int grad4Temp[][4] = { {0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1}, {0,-1,1,1},{0,-1,1,-1},{0,-1,-1,1},{0,-1,-1,-1}, {1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1}, {-1,0,1,1},{-1,0,1,-1},{-1,0,-1,1},{-1,0,-1,-1}, {1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1}, {-1,1,0,1},{-1,1,0,-1},{-1,-1,0,1},{-1,-1,0,-1}, {1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0}, {-1,1,1,0},{-1,1,-1,0},{-1,-1,1,0},{-1,-1,-1,0} }; for(int i(0) ; i < 32 ; ++i) for(int j(0) ; j < 4 ; ++j) gradient4[i][j] = grad4Temp[i][j]; } template T NzSimplex4D::GetValue(T x, T y, T z, T w, T resolution) { x *= resolution; y *= resolution; z *= resolution; w *= resolution; sum = (x + y + z + w) * SkewCoeff4D; skewedCubeOrigin.x = this->fastfloor(x + sum); skewedCubeOrigin.y = this->fastfloor(y + sum); skewedCubeOrigin.z = this->fastfloor(z + sum); skewedCubeOrigin.w = this->fastfloor(w + sum); sum = (skewedCubeOrigin.x + skewedCubeOrigin.y + skewedCubeOrigin.z + skewedCubeOrigin.w) * UnskewCoeff4D; unskewedCubeOrigin.x = skewedCubeOrigin.x - sum; unskewedCubeOrigin.y = skewedCubeOrigin.y - sum; unskewedCubeOrigin.z = skewedCubeOrigin.z - sum; unskewedCubeOrigin.w = skewedCubeOrigin.w - sum; unskewedDistToOrigin.x = x - unskewedCubeOrigin.x; unskewedDistToOrigin.y = y - unskewedCubeOrigin.y; unskewedDistToOrigin.z = z - unskewedCubeOrigin.z; unskewedDistToOrigin.w = w - unskewedCubeOrigin.w; c1 = (unskewedDistToOrigin.x > unskewedDistToOrigin.y) ? 32 : 0; c2 = (unskewedDistToOrigin.x > unskewedDistToOrigin.z) ? 16 : 0; c3 = (unskewedDistToOrigin.y > unskewedDistToOrigin.z) ? 8 : 0; c4 = (unskewedDistToOrigin.x > unskewedDistToOrigin.w) ? 4 : 0; c5 = (unskewedDistToOrigin.y > unskewedDistToOrigin.w) ? 2 : 0; c6 = (unskewedDistToOrigin.z > unskewedDistToOrigin.w) ? 1 : 0; c = c1 + c2 + c3 + c4 + c5 + c6; off1.x = lookupTable4D[c][0] >= 3 ? 1 : 0; off1.y = lookupTable4D[c][1] >= 3 ? 1 : 0; off1.z = lookupTable4D[c][2] >= 3 ? 1 : 0; off1.w = lookupTable4D[c][3] >= 3 ? 1 : 0; off2.x = lookupTable4D[c][0] >= 2 ? 1 : 0; off2.y = lookupTable4D[c][1] >= 2 ? 1 : 0; off2.z = lookupTable4D[c][2] >= 2 ? 1 : 0; off2.w = lookupTable4D[c][3] >= 2 ? 1 : 0; off3.x = lookupTable4D[c][0] >= 1 ? 1 : 0; off3.y = lookupTable4D[c][1] >= 1 ? 1 : 0; off3.z = lookupTable4D[c][2] >= 1 ? 1 : 0; off3.w = lookupTable4D[c][3] >= 1 ? 1 : 0; d1 = unskewedDistToOrigin; d2.x = d1.x - off1.x + UnskewCoeff4D; d2.y = d1.y - off1.y + UnskewCoeff4D; d2.z = d1.z - off1.z + UnskewCoeff4D; d2.w = d1.w - off1.w + UnskewCoeff4D; d3.x = d1.x - off2.x + 2*UnskewCoeff4D; d3.y = d1.y - off2.y + 2*UnskewCoeff4D; d3.z = d1.z - off2.z + 2*UnskewCoeff4D; d3.w = d1.w - off2.w + 2*UnskewCoeff4D; d4.x = d1.x - off3.x + 3*UnskewCoeff4D; d4.y = d1.y - off3.y + 3*UnskewCoeff4D; d4.z = d1.z - off3.z + 3*UnskewCoeff4D; d4.w = d1.w - off3.w + 3*UnskewCoeff4D; d5.x = d1.x - 1.0 + 4*UnskewCoeff4D; d5.y = d1.y - 1.0 + 4*UnskewCoeff4D; d5.z = d1.z - 1.0 + 4*UnskewCoeff4D; d5.w = d1.w - 1.0 + 4*UnskewCoeff4D; ii = skewedCubeOrigin.x & 255; jj = skewedCubeOrigin.y & 255; kk = skewedCubeOrigin.z & 255; ll = skewedCubeOrigin.w & 255; gi0 = this->perm[ii + this->perm[jj + this->perm[kk + this->perm[ll]]]] & 31; gi1 = this->perm[ii + off1.x + this->perm[jj + off1.y + this->perm[kk + off1.z + this->perm[ll + off1.w]]]] & 31; gi2 = this->perm[ii + off2.x + this->perm[jj + off2.y + this->perm[kk + off2.z + this->perm[ll + off2.w]]]] & 31; gi3 = this->perm[ii + off3.x + this->perm[jj + off3.y + this->perm[kk + off3.z + this->perm[ll + off3.w]]]] & 31; gi4 = this->perm[ii + 1 + this->perm[jj + 1 + this->perm[kk + 1 + this->perm[ll + 1]]]] % 32; c1 = 0.6 - d1.x*d1.x - d1.y*d1.y - d1.z*d1.z - d1.w*d1.w; c2 = 0.6 - d2.x*d2.x - d2.y*d2.y - d2.z*d2.z - d2.w*d2.w; c3 = 0.6 - d3.x*d3.x - d3.y*d3.y - d3.z*d3.z - d3.w*d3.w; c4 = 0.6 - d4.x*d4.x - d4.y*d4.y - d4.z*d4.z - d4.w*d4.w; c5 = 0.6 - d5.x*d5.x - d5.y*d5.y - d5.z*d5.z - d5.w*d5.w; if(c1 < 0) n1 = 0; else n1 = c1*c1*c1*c1*(gradient4[gi0][0]*d1.x + gradient4[gi0][1]*d1.y + gradient4[gi0][2]*d1.z + gradient4[gi0][3]*d1.w); if(c2 < 0) n2 = 0; else n2 = c2*c2*c2*c2*(gradient4[gi1][0]*d2.x + gradient4[gi1][1]*d2.y + gradient4[gi1][2]*d2.z + gradient4[gi1][3]*d2.w); if(c3 < 0) n3 = 0; else n3 = c3*c3*c3*c3*(gradient4[gi2][0]*d3.x + gradient4[gi2][1]*d3.y + gradient4[gi2][2]*d3.z + gradient4[gi2][3]*d3.w); if(c4 < 0) n4 = 0; else n4 = c4*c4*c4*c4*(gradient4[gi3][0]*d4.x + gradient4[gi3][1]*d4.y + gradient4[gi3][2]*d4.z + gradient4[gi3][3]*d4.w); if(c5 < 0) n5 = 0; else n5 = c5*c5*c5*c5*(gradient4[gi4][0]*d5.x + gradient4[gi4][1]*d5.y + gradient4[gi4][2]*d5.z + gradient4[gi4][3]*d5.w); return (n1+n2+n3+n4+n5)*27.0; } #include