/* Nazara Engine - Assimp Plugin Copyright (C) 2015 Jérôme "Lynix" Leclercq (lynix680@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Nz; void ProcessJoints(aiNode* node, Skeleton* skeleton, const std::set& joints) { Nz::String jointName(node->mName.data, node->mName.length); if (joints.count(jointName)) { Joint* joint = skeleton->GetJoint(jointName); if (joint) { if (node->mParent) joint->SetParent(skeleton->GetJoint(node->mParent->mName.C_Str())); Matrix4f transformMatrix(node->mTransformation.a1, node->mTransformation.a2, node->mTransformation.a3, node->mTransformation.a4, node->mTransformation.b1, node->mTransformation.b2, node->mTransformation.b3, node->mTransformation.b4, node->mTransformation.c1, node->mTransformation.c2, node->mTransformation.c3, node->mTransformation.c4, node->mTransformation.d1, node->mTransformation.d2, node->mTransformation.d3, node->mTransformation.d4); transformMatrix.Transpose(); transformMatrix.InverseAffine(); joint->SetInverseBindMatrix(transformMatrix); } } for (unsigned int i = 0; i < node->mNumChildren; ++i) ProcessJoints(node->mChildren[i], skeleton, joints); } bool IsSupported(const std::string& extension) { std::string dotExt = '.' + extension; return (aiIsExtensionSupported(dotExt.data()) == AI_TRUE); } Ternary CheckAnimation(Stream& /*stream*/, const AnimationParams& parameters) { bool skip; if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip) return Ternary_False; return Ternary_Unknown; } AnimationRef LoadAnimation(Stream& stream, const AnimationParams& parameters) { std::string streamPath = stream.GetPath().generic_u8string(); FileIOUserdata userdata; userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath; userdata.originalStream = &stream; aiFileIO fileIO; fileIO.CloseProc = StreamCloser; fileIO.OpenProc = StreamOpener; fileIO.UserData = reinterpret_cast(&userdata); unsigned int postProcess = aiProcess_CalcTangentSpace | aiProcess_Debone | aiProcess_FindInvalidData | aiProcess_FixInfacingNormals | aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals | aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices | aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded | aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes | aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials | aiProcess_SortByPType | aiProcess_SplitLargeMeshes | aiProcess_TransformUVCoords | aiProcess_Triangulate; aiPropertyStore* properties = aiCreatePropertyStore(); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_RVC_FLAGS, ~aiComponent_ANIMATIONS); const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, 0, &fileIO, properties); aiReleasePropertyStore(properties); if (!scene) { NazaraError("Assimp failed to import file: " + Nz::String(aiGetErrorString())); return nullptr; } if (!scene->HasAnimations()) { NazaraError("File has no animation"); return nullptr; } aiAnimation* animation = scene->mAnimations[0]; unsigned int maxFrameCount = 0; for (unsigned int i = 0; i < animation->mNumChannels; ++i) { aiNodeAnim* nodeAnim = animation->mChannels[i]; maxFrameCount = std::max({ maxFrameCount, nodeAnim->mNumPositionKeys, nodeAnim->mNumRotationKeys, nodeAnim->mNumScalingKeys }); } AnimationRef anim = Animation::New(); anim->CreateSkeletal(maxFrameCount, animation->mNumChannels); Sequence sequence; sequence.firstFrame = 0; sequence.frameCount = maxFrameCount; sequence.frameRate = animation->mTicksPerSecond; anim->AddSequence(sequence); SequenceJoint* sequenceJoints = anim->GetSequenceJoints(); Quaternionf rotationQuat = Quaternionf::Identity(); for (unsigned int i = 0; i < animation->mNumChannels; ++i) { aiNodeAnim* nodeAnim = animation->mChannels[i]; for (unsigned int j = 0; j < nodeAnim->mNumPositionKeys; ++j) { SequenceJoint& sequenceJoint = sequenceJoints[i*animation->mNumChannels + j]; aiQuaternion rotation = nodeAnim->mRotationKeys[j].mValue; aiVector3D position = nodeAnim->mPositionKeys[j].mValue; sequenceJoint.position = Vector3f(position.x, position.y, position.z); sequenceJoint.rotation = Quaternionf(rotation.w, rotation.x, rotation.y, rotation.z); sequenceJoint.scale.Set(1.f); } } return anim; } Ternary CheckMesh(Stream& /*stream*/, const MeshParams& parameters) { bool skip; if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip) return Ternary_False; return Ternary_Unknown; } MeshRef LoadMesh(Stream& stream, const MeshParams& parameters) { std::string streamPath = stream.GetPath().generic_u8string(); FileIOUserdata userdata; userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath; userdata.originalStream = &stream; aiFileIO fileIO; fileIO.CloseProc = StreamCloser; fileIO.OpenProc = StreamOpener; fileIO.UserData = reinterpret_cast(&userdata); unsigned int postProcess = aiProcess_CalcTangentSpace | aiProcess_Debone | aiProcess_FindInvalidData | aiProcess_FixInfacingNormals | aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals | aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices | aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded | aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes | aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials | aiProcess_SortByPType | aiProcess_SplitLargeMeshes | aiProcess_TransformUVCoords | aiProcess_Triangulate; if (parameters.optimizeIndexBuffers) postProcess |= aiProcess_ImproveCacheLocality; double smoothingAngle = 80.f; parameters.custom.GetDoubleParameter("AssimpLoader_SmoothingAngle", &smoothingAngle); long long triangleLimit = 1'000'000; parameters.custom.GetIntegerParameter("AssimpLoader_TriangleLimit", &triangleLimit); long long vertexLimit = 1'000'000; parameters.custom.GetIntegerParameter("AssimpLoader_VertexLimit", &vertexLimit); int excludedComponents = 0; if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Color)) excludedComponents |= aiComponent_COLORS; if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Normal)) excludedComponents |= aiComponent_NORMALS; if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Tangent)) excludedComponents |= aiComponent_TANGENTS_AND_BITANGENTS; if (!parameters.vertexDeclaration->HasComponent(VertexComponent_TexCoord)) excludedComponents |= aiComponent_TEXCOORDS; aiPropertyStore* properties = aiCreatePropertyStore(); aiSetImportPropertyFloat(properties, AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE, float(smoothingAngle)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SBP_REMOVE, ~aiPrimitiveType_TRIANGLE); //< We only want triangles aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_TRIANGLE_LIMIT, int(triangleLimit)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_VERTEX_LIMIT, int(vertexLimit)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_RVC_FLAGS, excludedComponents); const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, postProcess, &fileIO, properties); aiReleasePropertyStore(properties); if (!scene) { NazaraError("Assimp failed to import file: " + Nz::String(aiGetErrorString())); return nullptr; } std::set joints; bool animatedMesh = false; if (parameters.animated) { for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx) { aiMesh* currentMesh = scene->mMeshes[meshIdx]; if (currentMesh->HasBones()) // Inline functions can be safely called { animatedMesh = true; for (unsigned int boneIdx = 0; boneIdx < currentMesh->mNumBones; ++boneIdx) joints.insert(currentMesh->mBones[boneIdx]->mName.C_Str()); } } } MeshRef mesh = Mesh::New(); if (animatedMesh) { mesh->CreateSkeletal(UInt32(joints.size())); Skeleton* skeleton = mesh->GetSkeleton(); // First, assign names unsigned int jointIndex = 0; for (const Nz::String& jointName : joints) skeleton->GetJoint(jointIndex++)->SetName(jointName); ProcessJoints(scene->mRootNode, skeleton, joints); // aiMaterial index in scene => Material index and data in Mesh std::unordered_map> materials; for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx) { aiMesh* iMesh = scene->mMeshes[meshIdx]; if (iMesh->HasBones()) { // For now, process only skeletal meshes } unsigned int indexCount = iMesh->mNumFaces * 3; unsigned int vertexCount = iMesh->mNumVertices; // Index buffer bool largeIndices = (vertexCount > std::numeric_limits::max()); IndexBufferRef indexBuffer = IndexBuffer::New(largeIndices, indexCount, parameters.storage, parameters.indexBufferFlags); IndexMapper indexMapper(indexBuffer, BufferAccess_DiscardAndWrite); IndexIterator index = indexMapper.begin(); for (unsigned int faceIdx = 0; faceIdx < iMesh->mNumFaces; ++faceIdx) { aiFace& face = iMesh->mFaces[faceIdx]; if (face.mNumIndices != 3) NazaraWarning("Assimp plugin: This face is not a triangle!"); *index++ = face.mIndices[0]; *index++ = face.mIndices[1]; *index++ = face.mIndices[2]; } indexMapper.Unmap(); // Make sure the normal/tangent matrix won't rescale our vectors Nz::Matrix4f normalTangentMatrix = parameters.matrix; if (normalTangentMatrix.HasScale()) normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale()); VertexBufferRef vertexBuffer = VertexBuffer::New(VertexDeclaration::Get(VertexLayout_XYZ_Normal_UV_Tangent_Skinning), vertexCount, parameters.storage, parameters.vertexBufferFlags); BufferMapper vertexMapper(vertexBuffer, BufferAccess_ReadWrite); SkeletalMeshVertex* vertices = static_cast(vertexMapper.GetPointer()); for (std::size_t vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D normal = iMesh->mNormals[vertexIdx]; aiVector3D position = iMesh->mVertices[vertexIdx]; aiVector3D tangent = iMesh->mTangents[vertexIdx]; aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx]; vertices[vertexIdx].weightCount = 0; vertices[vertexIdx].normal = normalTangentMatrix.Transform({ normal.x, normal.y, normal.z }, 0.f); vertices[vertexIdx].position = parameters.matrix * Vector3f(position.x, position.y, position.z); vertices[vertexIdx].tangent = normalTangentMatrix.Transform({ tangent.x, tangent.y, tangent.z }, 0.f); vertices[vertexIdx].uv = parameters.texCoordOffset + Vector2f(uv.x, uv.y) * parameters.texCoordScale; } for (unsigned int boneIdx = 0; boneIdx < iMesh->mNumBones; ++boneIdx) { aiBone* bone = iMesh->mBones[boneIdx]; for (unsigned int weightIdx = 0; weightIdx < bone->mNumWeights; ++weightIdx) { aiVertexWeight& vertexWeight = bone->mWeights[weightIdx]; SkeletalMeshVertex& vertex = vertices[vertexWeight.mVertexId]; std::size_t weightIndex = vertex.weightCount++; vertex.jointIndexes[weightIndex] = boneIdx; vertex.weights[weightIndex] = vertexWeight.mWeight; } } // Submesh SkeletalMeshRef subMesh = SkeletalMesh::New(vertexBuffer, indexBuffer); subMesh->SetMaterialIndex(iMesh->mMaterialIndex); auto matIt = materials.find(iMesh->mMaterialIndex); if (matIt == materials.end()) { ParameterList matData; aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex]; auto ConvertColor = [&](const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey) { aiColor4D color; if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS) { matData.SetParameter(colorKey, Color(static_cast(color.r * 255), static_cast(color.g * 255), static_cast(color.b * 255), static_cast(color.a * 255))); } }; auto ConvertTexture = [&](aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr) { aiString path; aiTextureMapMode mapMode[3]; if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS) { matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string()); if (wrapKey) { SamplerWrap wrap = SamplerWrap_Default; switch (mapMode[0]) { case aiTextureMapMode_Clamp: case aiTextureMapMode_Decal: wrap = SamplerWrap_Clamp; break; case aiTextureMapMode_Mirror: wrap = SamplerWrap_MirroredRepeat; break; case aiTextureMapMode_Wrap: wrap = SamplerWrap_Repeat; break; default: NazaraWarning("Assimp texture map mode 0x" + String::Number(mapMode[0], 16) + " not handled"); break; } matData.SetParameter(wrapKey, static_cast(wrap)); } } }; ConvertColor(AI_MATKEY_COLOR_AMBIENT, MaterialData::AmbientColor); ConvertColor(AI_MATKEY_COLOR_DIFFUSE, MaterialData::DiffuseColor); ConvertColor(AI_MATKEY_COLOR_SPECULAR, MaterialData::SpecularColor); ConvertTexture(aiTextureType_DIFFUSE, MaterialData::DiffuseTexturePath, MaterialData::DiffuseWrap); ConvertTexture(aiTextureType_EMISSIVE, MaterialData::EmissiveTexturePath); ConvertTexture(aiTextureType_HEIGHT, MaterialData::HeightTexturePath); ConvertTexture(aiTextureType_NORMALS, MaterialData::NormalTexturePath); ConvertTexture(aiTextureType_OPACITY, MaterialData::AlphaTexturePath); ConvertTexture(aiTextureType_SPECULAR, MaterialData::SpecularTexturePath, MaterialData::SpecularWrap); aiString name; if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS) matData.SetParameter(MaterialData::Name, String(name.data, name.length)); int iValue; if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS) matData.SetParameter(MaterialData::FaceCulling, !iValue); matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(UInt32(materials.size()), std::move(matData)))).first; } subMesh->SetMaterialIndex(matIt->first); mesh->AddSubMesh(subMesh); } mesh->SetMaterialCount(std::max(UInt32(materials.size()), 1)); for (const auto& pair : materials) mesh->SetMaterialData(pair.second.first, pair.second.second); } else { mesh->CreateStatic(); // aiMaterial index in scene => Material index and data in Mesh std::unordered_map> materials; for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx) { aiMesh* iMesh = scene->mMeshes[meshIdx]; if (!iMesh->HasBones()) // Don't process skeletal meshs { unsigned int indexCount = iMesh->mNumFaces * 3; unsigned int vertexCount = iMesh->mNumVertices; // Index buffer bool largeIndices = (vertexCount > std::numeric_limits::max()); IndexBufferRef indexBuffer = IndexBuffer::New(largeIndices, indexCount, parameters.storage, parameters.indexBufferFlags); IndexMapper indexMapper(indexBuffer, BufferAccess_DiscardAndWrite); IndexIterator index = indexMapper.begin(); for (unsigned int faceIdx = 0; faceIdx < iMesh->mNumFaces; ++faceIdx) { aiFace& face = iMesh->mFaces[faceIdx]; if (face.mNumIndices != 3) NazaraWarning("Assimp plugin: This face is not a triangle!"); *index++ = face.mIndices[0]; *index++ = face.mIndices[1]; *index++ = face.mIndices[2]; } indexMapper.Unmap(); // Vertex buffer // Make sure the normal/tangent matrix won't rescale our vectors Nz::Matrix4f normalTangentMatrix = parameters.matrix; if (normalTangentMatrix.HasScale()) normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale()); VertexBufferRef vertexBuffer = VertexBuffer::New(parameters.vertexDeclaration, vertexCount, parameters.storage, parameters.vertexBufferFlags); VertexMapper vertexMapper(vertexBuffer, BufferAccess_DiscardAndWrite); auto posPtr = vertexMapper.GetComponentPtr(VertexComponent_Position); for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D position = iMesh->mVertices[vertexIdx]; *posPtr++ = parameters.matrix * Vector3f(position.x, position.y, position.z); } if (auto normalPtr = vertexMapper.GetComponentPtr(VertexComponent_Normal)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D normal = iMesh->mNormals[vertexIdx]; *normalPtr++ = normalTangentMatrix.Transform({normal.x, normal.y, normal.z}, 0.f); } } bool generateTangents = false; if (auto tangentPtr = vertexMapper.GetComponentPtr(VertexComponent_Tangent)) { if (iMesh->HasTangentsAndBitangents()) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D tangent = iMesh->mTangents[vertexIdx]; *tangentPtr++ = normalTangentMatrix.Transform({tangent.x, tangent.y, tangent.z}, 0.f); } } else generateTangents = true; } if (auto uvPtr = vertexMapper.GetComponentPtr(VertexComponent_TexCoord)) { if (iMesh->HasTextureCoords(0)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx]; *uvPtr++ = parameters.texCoordOffset + Vector2f(uv.x, uv.y) * parameters.texCoordScale; } } else { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) *uvPtr++ = Vector2f::Zero(); } } vertexMapper.Unmap(); // Submesh StaticMeshRef subMesh = StaticMesh::New(vertexBuffer, indexBuffer); subMesh->GenerateAABB(); subMesh->SetMaterialIndex(iMesh->mMaterialIndex); if (generateTangents) subMesh->GenerateTangents(); auto matIt = materials.find(iMesh->mMaterialIndex); if (matIt == materials.end()) { ParameterList matData; aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex]; auto ConvertColor = [&] (const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey) { aiColor4D color; if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS) { matData.SetParameter(colorKey, Color(static_cast(color.r * 255), static_cast(color.g * 255), static_cast(color.b * 255), static_cast(color.a * 255))); } }; auto ConvertTexture = [&] (aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr) { aiString path; aiTextureMapMode mapMode[3]; if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS) { matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string()); if (wrapKey) { SamplerWrap wrap = SamplerWrap_Default; switch (mapMode[0]) { case aiTextureMapMode_Clamp: case aiTextureMapMode_Decal: wrap = SamplerWrap_Clamp; break; case aiTextureMapMode_Mirror: wrap = SamplerWrap_MirroredRepeat; break; case aiTextureMapMode_Wrap: wrap = SamplerWrap_Repeat; break; default: NazaraWarning("Assimp texture map mode 0x" + String::Number(mapMode[0], 16) + " not handled"); break; } matData.SetParameter(wrapKey, static_cast(wrap)); } } }; ConvertColor(AI_MATKEY_COLOR_AMBIENT, MaterialData::AmbientColor); ConvertColor(AI_MATKEY_COLOR_DIFFUSE, MaterialData::DiffuseColor); ConvertColor(AI_MATKEY_COLOR_SPECULAR, MaterialData::SpecularColor); ConvertTexture(aiTextureType_DIFFUSE, MaterialData::DiffuseTexturePath, MaterialData::DiffuseWrap); ConvertTexture(aiTextureType_EMISSIVE, MaterialData::EmissiveTexturePath); ConvertTexture(aiTextureType_HEIGHT, MaterialData::HeightTexturePath); ConvertTexture(aiTextureType_NORMALS, MaterialData::NormalTexturePath); ConvertTexture(aiTextureType_OPACITY, MaterialData::AlphaTexturePath); ConvertTexture(aiTextureType_SPECULAR, MaterialData::SpecularTexturePath, MaterialData::SpecularWrap); aiString name; if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS) matData.SetParameter(MaterialData::Name, String(name.data, name.length)); int iValue; if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS) matData.SetParameter(MaterialData::FaceCulling, !iValue); matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(UInt32(materials.size()), std::move(matData)))).first; } subMesh->SetMaterialIndex(matIt->first); mesh->AddSubMesh(subMesh); } mesh->SetMaterialCount(std::max(UInt32(materials.size()), 1)); for (const auto& pair : materials) mesh->SetMaterialData(pair.second.first, pair.second.second); } if (parameters.center) mesh->Recenter(); } aiReleaseImport(scene); return mesh; } extern "C" { NAZARA_EXPORT int PluginLoad() { Nz::AnimationLoader::RegisterLoader(IsSupported, CheckAnimation, LoadAnimation); Nz::MeshLoader::RegisterLoader(IsSupported, CheckMesh, LoadMesh); return 1; } NAZARA_EXPORT void PluginUnload() { Nz::AnimationLoader::RegisterLoader(IsSupported, CheckAnimation, LoadAnimation); Nz::MeshLoader::UnregisterLoader(IsSupported, CheckMesh, LoadMesh); } }