/* Nazara Engine - Assimp Plugin Copyright (C) 2015 Jérôme "Lynix" Leclercq (lynix680@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct SceneInfo { struct Node { const aiNode* node; std::size_t totalChildrenCount; }; struct SkeletalMesh { const aiMesh* mesh; std::size_t nodeIndex; std::size_t skeletonRootIndex; std::unordered_map bones; }; struct StaticMesh { const aiMesh* mesh; std::size_t nodeIndex; }; std::unordered_multimap nodeByName; std::vector nodes; std::vector skeletalMeshes; std::vector staticMeshes; }; void VisitNodes(SceneInfo& sceneInfo, const aiScene* scene, const aiNode* node) { std::size_t nodeIndex = sceneInfo.nodes.size(); sceneInfo.nodeByName.emplace(node->mName.C_Str(), nodeIndex); auto& sceneNode = sceneInfo.nodes.emplace_back(); sceneNode.node = node; for (unsigned int i = 0; i < node->mNumMeshes; ++i) { const aiMesh* mesh = scene->mMeshes[node->mMeshes[i]]; if (mesh->HasBones()) { auto& skeletalMesh = sceneInfo.skeletalMeshes.emplace_back(); skeletalMesh.mesh = mesh; skeletalMesh.nodeIndex = nodeIndex; for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; ++boneIndex) skeletalMesh.bones.emplace(mesh->mBones[boneIndex]->mName.C_Str(), boneIndex); } else { auto& staticMesh = sceneInfo.staticMeshes.emplace_back(); staticMesh.mesh = mesh; staticMesh.nodeIndex = nodeIndex; } } std::size_t prevNodeCount = sceneInfo.nodes.size(); for (unsigned int i = 0; i < node->mNumChildren; ++i) VisitNodes(sceneInfo, scene, node->mChildren[i]); // Can't use sceneNode from there sceneInfo.nodes[nodeIndex].totalChildrenCount = sceneInfo.nodes.size() - prevNodeCount; } bool FindSkeletonRoot(SceneInfo& sceneInfo, SceneInfo::SkeletalMesh& skeletalMesh, const aiNode* node) { if (skeletalMesh.bones.find(node->mName.C_Str()) != skeletalMesh.bones.end()) { // Get to parents until there's only one child while (node->mParent && node->mParent->mNumChildren != 1) node = node->mParent; /*if (!node->mParent && node->mNumChildren > 1) { NazaraError("failed to identify skeleton root node"); return false; }*/ auto range = sceneInfo.nodeByName.equal_range(node->mName.C_Str()); if (std::distance(range.first, range.second) != 1) { NazaraError("failed to identify skeleton root node: " + std::to_string(std::distance(range.first, range.second)) + " node(s) matched"); return false; } skeletalMesh.skeletonRootIndex = range.first->second; return true; } for (unsigned int i = 0; i < node->mNumChildren; ++i) { if (FindSkeletonRoot(sceneInfo, skeletalMesh, node->mChildren[i])) return true; } return false; } void ProcessJoints(const SceneInfo::SkeletalMesh& skeletalMesh, Nz::Skeleton* skeleton, const aiNode* node, std::size_t& jointIndex) { Nz::Joint* joint = skeleton->GetJoint(jointIndex); joint->SetName(node->mName.C_Str()); if (jointIndex != 0) joint->SetParent(skeleton->GetJoint(node->mParent->mName.C_Str())); jointIndex++; if (auto it = skeletalMesh.bones.find(node->mName.C_Str()); it != skeletalMesh.bones.end()) { const aiBone* bone = skeletalMesh.mesh->mBones[it->second]; Nz::Matrix4f offsetMatrix(bone->mOffsetMatrix.a1, bone->mOffsetMatrix.b1, bone->mOffsetMatrix.c1, bone->mOffsetMatrix.d1, bone->mOffsetMatrix.a2, bone->mOffsetMatrix.b2, bone->mOffsetMatrix.c2, bone->mOffsetMatrix.d2, bone->mOffsetMatrix.a3, bone->mOffsetMatrix.b3, bone->mOffsetMatrix.c3, bone->mOffsetMatrix.d3, bone->mOffsetMatrix.a4, bone->mOffsetMatrix.b4, bone->mOffsetMatrix.c4, bone->mOffsetMatrix.d4); joint->SetInverseBindMatrix(offsetMatrix); } else joint->SetInverseBindMatrix(Nz::Matrix4f::Identity()); for (unsigned int i = 0; i < node->mNumChildren; ++i) ProcessJoints(skeletalMesh, skeleton, node->mChildren[i], jointIndex); } bool IsSupported(const std::string_view& extension) { std::string dotExt; dotExt.reserve(extension.size() + 1); dotExt += '.'; dotExt += extension; return (aiIsExtensionSupported(dotExt.data()) == AI_TRUE); } Nz::Ternary CheckAnimation(Nz::Stream& /*stream*/, const Nz::AnimationParams& parameters) { bool skip; if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip) return Nz::Ternary::False; return Nz::Ternary::Unknown; } std::shared_ptr LoadAnimation(Nz::Stream& stream, const Nz::AnimationParams& parameters) { NazaraAssert(parameters.IsValid(), "invalid animation parameters"); std::string streamPath = Nz::PathToString(stream.GetPath()); FileIOUserdata userdata; userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath; userdata.originalStream = &stream; aiFileIO fileIO; fileIO.CloseProc = StreamCloser; fileIO.OpenProc = StreamOpener; fileIO.UserData = reinterpret_cast(&userdata); unsigned int postProcess = aiProcess_CalcTangentSpace /*| aiProcess_Debone*/ | aiProcess_FindInvalidData | aiProcess_FixInfacingNormals | aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals | aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices | aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded /*| aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes*/ | aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials | aiProcess_SortByPType | aiProcess_SplitLargeMeshes | aiProcess_TransformUVCoords | aiProcess_Triangulate; aiPropertyStore* properties = aiCreatePropertyStore(); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SBP_REMOVE, ~aiPrimitiveType_TRIANGLE); //< We only want triangles Nz::CallOnExit releaseProperties([&] { aiReleasePropertyStore(properties); }); const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, postProcess, &fileIO, properties); Nz::CallOnExit releaseScene([&] { aiReleaseImport(scene); }); releaseProperties.CallAndReset(); if (!scene) { NazaraError("Assimp failed to import file: " + std::string(aiGetErrorString())); return nullptr; } if (!scene->HasAnimations()) { NazaraError("File has no animation"); return nullptr; } SceneInfo sceneInfo; VisitNodes(sceneInfo, scene, scene->mRootNode); const aiAnimation* animation = scene->mAnimations[0]; unsigned int maxFrameCount = 0; for (unsigned int i = 0; i < animation->mNumChannels; ++i) { const aiNodeAnim* nodeAnim = animation->mChannels[i]; maxFrameCount = std::max({ maxFrameCount, nodeAnim->mNumPositionKeys, nodeAnim->mNumRotationKeys, nodeAnim->mNumScalingKeys }); } std::shared_ptr anim = std::make_shared(); anim->CreateSkeletal(maxFrameCount, parameters.skeleton->GetJointCount()); Nz::Sequence sequence; sequence.firstFrame = 0; sequence.frameCount = maxFrameCount; sequence.frameRate = (animation->mTicksPerSecond != 0.0) ? animation->mTicksPerSecond : 24.0; anim->AddSequence(sequence); for (unsigned int i = 0; i < animation->mNumChannels; ++i) { const aiNodeAnim* nodeAnim = animation->mChannels[i]; std::size_t jointIndex = parameters.skeleton->GetJointIndex(nodeAnim->mNodeName.C_Str()); if (jointIndex == Nz::Skeleton::InvalidJointIndex) continue; Nz::Vector3f currentPosition = Nz::Vector3f::Zero(); Nz::Vector3f currentScale = Nz::Vector3f::Unit(); Nz::Quaternionf currentRotation = Nz::Quaternionf::Identity(); unsigned int positionKeyIndex = std::numeric_limits::max(); unsigned int rotationKeyIndex = std::numeric_limits::max(); unsigned int scaleKeyIndex = std::numeric_limits::max(); for (unsigned int frameIndex = 0; frameIndex < maxFrameCount; ++frameIndex) { double frameTime = frameIndex; for (unsigned int nextPos = positionKeyIndex + 1; nextPos < nodeAnim->mNumPositionKeys; ++nextPos) { if (nodeAnim->mPositionKeys[nextPos].mTime > frameTime) { if (--nextPos != positionKeyIndex) { const aiVector3D& vec = nodeAnim->mPositionKeys[nextPos].mValue; currentPosition = Nz::Vector3f(vec.x, vec.y, vec.z); positionKeyIndex = nextPos; } break; } } for (unsigned int nextRot = rotationKeyIndex + 1; nextRot < nodeAnim->mNumRotationKeys; ++nextRot) { if (nodeAnim->mRotationKeys[nextRot].mTime > frameTime) { if (--nextRot != rotationKeyIndex) { const aiQuaternion& rot = nodeAnim->mRotationKeys[nextRot].mValue; currentRotation = Nz::Quaternionf(rot.w, rot.x, rot.y, rot.z); rotationKeyIndex = nextRot; } break; } } // TODO: Scale Nz::SequenceJoint* sequenceJoints = anim->GetSequenceJoints(frameIndex); sequenceJoints[jointIndex].position = currentPosition; sequenceJoints[jointIndex].rotation = currentRotation; sequenceJoints[jointIndex].scale = currentScale; } } Nz::Quaternionf rotationQuat = Nz::Quaternionf::Identity(); /*for (unsigned int i = 0; i < animation->mNumChannels; ++i) { const aiNodeAnim* nodeAnim = animation->mChannels[i]; unsigned int keyCount = std::max({ nodeAnim->mNumPositionKeys, nodeAnim->mNumRotationKeys, nodeAnim->mNumScalingKeys }); if (nodeAnim->mNumPositionKeys != keyCount && nodeAnim->mNumPositionKeys != 0) NazaraWarning("expected at least one position key, got 0"); if (nodeAnim->mNumRotationKeys != keyCount && nodeAnim->mNumRotationKeys != 0) NazaraWarning("expected at least one rotation key, got 0"); if (nodeAnim->mNumScalingKeys != keyCount && nodeAnim->mNumScalingKeys != 0) NazaraWarning("expected at least one scaling key, got 0"); for (unsigned int j = 0; j < keyCount; ++j) { unsigned int posKey = std::min(j, nodeAnim->mNumPositionKeys - 1); unsigned int rotKey = std::min(j, nodeAnim->mNumRotationKeys - 1); unsigned int scaleKey = std::min(j, nodeAnim->mNumScalingKeys - 1); aiQuaternion rotation = nodeAnim->mRotationKeys[posKey].mValue; aiVector3D position = nodeAnim->mPositionKeys[rotKey].mValue; aiVector3D scaling = nodeAnim->mScalingKeys[scaleKey].mValue; Nz::SequenceJoint& sequenceJoint = sequenceJoints[i*animation->mNumChannels + j]; sequenceJoint.position = Nz::Vector3f(position.x, position.y, position.z); sequenceJoint.rotation = Nz::Quaternionf(rotation.w, rotation.x, rotation.y, rotation.z); sequenceJoint.scale = Nz::Vector3f(scaling.x, scaling.y, scaling.z); } }*/ return anim; } Nz::Ternary CheckMesh(Nz::Stream& /*stream*/, const Nz::MeshParams& parameters) { bool skip; if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip) return Nz::Ternary::False; return Nz::Ternary::Unknown; } std::shared_ptr LoadMesh(Nz::Stream& stream, const Nz::MeshParams& parameters) { std::string streamPath = Nz::PathToString(stream.GetPath()); FileIOUserdata userdata; userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath; userdata.originalStream = &stream; aiFileIO fileIO; fileIO.CloseProc = StreamCloser; fileIO.OpenProc = StreamOpener; fileIO.UserData = reinterpret_cast(&userdata); unsigned int postProcess = aiProcess_CalcTangentSpace /*| aiProcess_Debone*/ | aiProcess_FindInvalidData | aiProcess_FixInfacingNormals | aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals | aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices | aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded /*| aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes*/ | aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials | aiProcess_SortByPType | aiProcess_SplitLargeMeshes | aiProcess_TransformUVCoords | aiProcess_Triangulate; if (parameters.optimizeIndexBuffers) postProcess |= aiProcess_ImproveCacheLocality; double smoothingAngle = 80.f; parameters.custom.GetDoubleParameter("AssimpLoader_SmoothingAngle", &smoothingAngle); long long triangleLimit = 1'000'000; parameters.custom.GetIntegerParameter("AssimpLoader_TriangleLimit", &triangleLimit); long long vertexLimit = 1'000'000; parameters.custom.GetIntegerParameter("AssimpLoader_VertexLimit", &vertexLimit); int excludedComponents = 0; if (!parameters.vertexDeclaration->HasComponent(Nz::VertexComponent::Color)) excludedComponents |= aiComponent_COLORS; if (!parameters.vertexDeclaration->HasComponent(Nz::VertexComponent::Normal)) excludedComponents |= aiComponent_NORMALS; if (!parameters.vertexDeclaration->HasComponent(Nz::VertexComponent::Tangent)) excludedComponents |= aiComponent_TANGENTS_AND_BITANGENTS; if (!parameters.vertexDeclaration->HasComponent(Nz::VertexComponent::TexCoord)) excludedComponents |= aiComponent_TEXCOORDS; aiPropertyStore* properties = aiCreatePropertyStore(); Nz::CallOnExit releaseProperties([&] { aiReleasePropertyStore(properties); }); aiSetImportPropertyFloat(properties, AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE, float(smoothingAngle)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SBP_REMOVE, ~aiPrimitiveType_TRIANGLE); //< We only want triangles aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_TRIANGLE_LIMIT, int(triangleLimit)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_VERTEX_LIMIT, int(vertexLimit)); aiSetImportPropertyInteger(properties, AI_CONFIG_PP_RVC_FLAGS, excludedComponents); const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, postProcess, &fileIO, properties); Nz::CallOnExit releaseScene([&] { aiReleaseImport(scene); }); releaseProperties.CallAndReset(); if (!scene) { NazaraError("Assimp failed to import file: " + std::string(aiGetErrorString())); return nullptr; } SceneInfo sceneInfo; VisitNodes(sceneInfo, scene, scene->mRootNode); for (auto& skeletalMesh : sceneInfo.skeletalMeshes) { if (!FindSkeletonRoot(sceneInfo, skeletalMesh, scene->mRootNode)) return nullptr; } std::shared_ptr mesh = std::make_shared(); if (parameters.animated && !sceneInfo.skeletalMeshes.empty()) { auto& skeletalMesh = sceneInfo.skeletalMeshes.front(); auto& skeletalRoot = sceneInfo.nodes[skeletalMesh.skeletonRootIndex]; mesh->CreateSkeletal(Nz::SafeCast(skeletalRoot.totalChildrenCount + 1)); Nz::Skeleton* skeleton = mesh->GetSkeleton(); std::size_t jointIndex = 0; ProcessJoints(skeletalMesh, skeleton, skeletalRoot.node, jointIndex); // aiMaterial index in scene => Material index and data in Mesh std::unordered_map> materials; const aiMesh* iMesh = skeletalMesh.mesh; unsigned int indexCount = iMesh->mNumFaces * 3; unsigned int vertexCount = iMesh->mNumVertices; // Index buffer bool largeIndices = (vertexCount > std::numeric_limits::max()); std::shared_ptr indexBuffer = std::make_shared((largeIndices) ? Nz::IndexType::U32 : Nz::IndexType::U16, indexCount, parameters.indexBufferFlags, parameters.bufferFactory); Nz::IndexMapper indexMapper(*indexBuffer); Nz::IndexIterator index = indexMapper.begin(); for (unsigned int faceIndex = 0; faceIndex < iMesh->mNumFaces; ++faceIndex) { const aiFace& face = iMesh->mFaces[faceIndex]; if (face.mNumIndices != 3) NazaraWarning("Assimp plugin: This face is not a triangle!"); *index++ = face.mIndices[0]; *index++ = face.mIndices[1]; *index++ = face.mIndices[2]; } indexMapper.Unmap(); // Make sure the normal/tangent matrix won't rescale our vectors Nz::Matrix4f normalTangentMatrix = parameters.matrix; if (normalTangentMatrix.HasScale()) normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale()); std::shared_ptr vertexBuffer = std::make_shared(Nz::VertexDeclaration::Get(Nz::VertexLayout::XYZ_Normal_UV_Tangent_Skinning), vertexCount, parameters.vertexBufferFlags, parameters.bufferFactory); Nz::VertexMapper vertexMapper(*vertexBuffer); // Vertex positions if (auto posPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Position)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D position = iMesh->mVertices[vertexIdx]; *posPtr++ = parameters.matrix * Nz::Vector3f(position.x, position.y, position.z); } } // Vertex normals if (auto normalPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Normal)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D normal = iMesh->mNormals[vertexIdx]; *normalPtr++ = normalTangentMatrix.Transform({ normal.x, normal.y, normal.z }, 0.f); } } // Vertex tangents bool generateTangents = false; if (auto tangentPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Tangent)) { if (iMesh->HasTangentsAndBitangents()) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D tangent = iMesh->mTangents[vertexIdx]; *tangentPtr++ = normalTangentMatrix.Transform({ tangent.x, tangent.y, tangent.z }, 0.f); } } else generateTangents = true; } // Vertex UVs if (auto uvPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::TexCoord)) { if (iMesh->HasTextureCoords(0)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx]; *uvPtr++ = parameters.texCoordOffset + Nz::Vector2f(uv.x, uv.y) * parameters.texCoordScale; } } else { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) *uvPtr++ = Nz::Vector2f::Zero(); } } // Vertex colors if (auto colorPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Color)) { if (iMesh->HasVertexColors(0)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiColor4D color = iMesh->mColors[0][vertexIdx]; *colorPtr++ = Nz::Color(color.r, color.g, color.b, color.a); } } else { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) *colorPtr++ = Nz::Color::White; } } auto jointIndicesPtr = vertexMapper.GetComponentPtr(VertexComponent::JointIndices); auto jointWeightPtr = vertexMapper.GetComponentPtr(VertexComponent::JointWeights); if (jointIndicesPtr || jointWeightPtr) { std::vector weightIndices(iMesh->mNumVertices, 0); for (unsigned int boneIndex = 0; boneIndex < iMesh->mNumBones; ++boneIndex) { aiBone* bone = iMesh->mBones[boneIndex]; for (unsigned int weightIndex = 0; weightIndex < bone->mNumWeights; ++weightIndex) { aiVertexWeight& vertexWeight = bone->mWeights[weightIndex]; std::size_t vertexWeightIndex = weightIndices[vertexWeight.mVertexId]++; if (jointIndicesPtr) jointIndicesPtr[vertexWeight.mVertexId][vertexWeightIndex] = boneIndex; if (jointWeightPtr) jointWeightPtr[vertexWeight.mVertexId][vertexWeightIndex] = vertexWeight.mWeight; } } } // Submesh std::shared_ptr subMesh = std::make_shared(vertexBuffer, indexBuffer); subMesh->SetMaterialIndex(iMesh->mMaterialIndex); auto matIt = materials.find(iMesh->mMaterialIndex); if (matIt == materials.end()) { Nz::ParameterList matData; aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex]; auto ConvertColor = [&](const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey) { aiColor4D color; if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS) { matData.SetParameter(colorKey, Nz::Color(color.r, color.g, color.b, color.a)); } }; auto ConvertTexture = [&](aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr) { aiString path; aiTextureMapMode mapMode[3]; if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS) { matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string()); if (wrapKey) { Nz::SamplerWrap wrap = Nz::SamplerWrap::Clamp; switch (mapMode[0]) { case aiTextureMapMode_Clamp: case aiTextureMapMode_Decal: wrap = Nz::SamplerWrap::Clamp; break; case aiTextureMapMode_Mirror: wrap = Nz::SamplerWrap::MirroredRepeat; break; case aiTextureMapMode_Wrap: wrap = Nz::SamplerWrap::Repeat; break; default: NazaraWarning("Assimp texture map mode 0x" + Nz::NumberToString(mapMode[0], 16) + " not handled"); break; } matData.SetParameter(wrapKey, static_cast(wrap)); } } }; ConvertColor(AI_MATKEY_COLOR_AMBIENT, Nz::MaterialData::AmbientColor); ConvertColor(AI_MATKEY_COLOR_DIFFUSE, Nz::MaterialData::DiffuseColor); ConvertColor(AI_MATKEY_COLOR_SPECULAR, Nz::MaterialData::SpecularColor); ConvertTexture(aiTextureType_DIFFUSE, Nz::MaterialData::DiffuseTexturePath, Nz::MaterialData::DiffuseWrap); ConvertTexture(aiTextureType_EMISSIVE, Nz::MaterialData::EmissiveTexturePath); ConvertTexture(aiTextureType_HEIGHT, Nz::MaterialData::HeightTexturePath); ConvertTexture(aiTextureType_NORMALS, Nz::MaterialData::NormalTexturePath); ConvertTexture(aiTextureType_OPACITY, Nz::MaterialData::AlphaTexturePath); ConvertTexture(aiTextureType_SPECULAR, Nz::MaterialData::SpecularTexturePath, Nz::MaterialData::SpecularWrap); aiString name; if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS) matData.SetParameter(Nz::MaterialData::Name, std::string(name.data, name.length)); int iValue; if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS) matData.SetParameter(Nz::MaterialData::FaceCulling, !iValue); matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(Nz::UInt32(materials.size()), std::move(matData)))).first; } subMesh->SetMaterialIndex(matIt->first); mesh->AddSubMesh(subMesh); mesh->SetMaterialCount(std::max(Nz::SafeCast(materials.size()), 1)); for (const auto& pair : materials) mesh->SetMaterialData(pair.second.first, pair.second.second); } else { mesh->CreateStatic(); // aiMaterial index in scene => Material index and data in Mesh std::unordered_map> materials; for (unsigned int meshIndex = 0; meshIndex < scene->mNumMeshes; ++meshIndex) { aiMesh* iMesh = scene->mMeshes[meshIndex]; unsigned int indexCount = iMesh->mNumFaces * 3; unsigned int vertexCount = iMesh->mNumVertices; // Index buffer bool largeIndices = (vertexCount > std::numeric_limits::max()); std::shared_ptr indexBuffer = std::make_shared((largeIndices) ? Nz::IndexType::U32 : Nz::IndexType::U16, indexCount, parameters.indexBufferFlags, parameters.bufferFactory); Nz::IndexMapper indexMapper(*indexBuffer); Nz::IndexIterator index = indexMapper.begin(); for (unsigned int faceIndex = 0; faceIndex < iMesh->mNumFaces; ++faceIndex) { const aiFace& face = iMesh->mFaces[faceIndex]; if (face.mNumIndices != 3) NazaraWarning("Assimp plugin: This face is not a triangle!"); // Index buffer *index++ = face.mIndices[0]; *index++ = face.mIndices[1]; *index++ = face.mIndices[2]; indexMapper.Unmap(); } // Vertex buffer // Make sure the normal/tangent matrix won't rescale our vectors Nz::Matrix4f normalTangentMatrix = parameters.matrix; if (normalTangentMatrix.HasScale()) normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale()); std::shared_ptr vertexBuffer = std::make_shared(parameters.vertexDeclaration, vertexCount, parameters.vertexBufferFlags, parameters.bufferFactory); Nz::VertexMapper vertexMapper(*vertexBuffer); // Vertex positions if (auto posPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Position)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D position = iMesh->mVertices[vertexIdx]; *posPtr++ = parameters.matrix * Nz::Vector3f(position.x, position.y, position.z); } } // Vertex normals if (auto normalPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Normal)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D normal = iMesh->mNormals[vertexIdx]; *normalPtr++ = normalTangentMatrix.Transform({normal.x, normal.y, normal.z}, 0.f); } } // Vertex tangents bool generateTangents = false; if (auto tangentPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Tangent)) { if (iMesh->HasTangentsAndBitangents()) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D tangent = iMesh->mTangents[vertexIdx]; *tangentPtr++ = normalTangentMatrix.Transform({tangent.x, tangent.y, tangent.z}, 0.f); } } else generateTangents = true; } // Vertex UVs if (auto uvPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::TexCoord)) { if (iMesh->HasTextureCoords(0)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx]; *uvPtr++ = parameters.texCoordOffset + Nz::Vector2f(uv.x, uv.y) * parameters.texCoordScale; } } else { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) *uvPtr++ = Nz::Vector2f::Zero(); } } // Vertex colors if (auto colorPtr = vertexMapper.GetComponentPtr(Nz::VertexComponent::Color)) { if (iMesh->HasVertexColors(0)) { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) { aiColor4D color = iMesh->mColors[0][vertexIdx]; *colorPtr++ = Nz::Color(color.r, color.g, color.b, color.a); } } else { for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx) *colorPtr++ = Nz::Color::White; } } vertexMapper.Unmap(); // Submesh std::shared_ptr subMesh = std::make_shared(vertexBuffer, indexBuffer); subMesh->GenerateAABB(); subMesh->SetMaterialIndex(iMesh->mMaterialIndex); if (generateTangents) subMesh->GenerateTangents(); auto matIt = materials.find(iMesh->mMaterialIndex); if (matIt == materials.end()) { Nz::ParameterList matData; aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex]; auto ConvertColor = [&] (const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey) { aiColor4D color; if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS) { matData.SetParameter(colorKey, Nz::Color(color.r, color.g, color.b, color.a)); } }; auto ConvertTexture = [&] (aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr) { aiString path; aiTextureMapMode mapMode[3]; if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS) { matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string()); if (wrapKey) { Nz::SamplerWrap wrap = Nz::SamplerWrap::Clamp; switch (mapMode[0]) { case aiTextureMapMode_Clamp: case aiTextureMapMode_Decal: wrap = Nz::SamplerWrap::Clamp; break; case aiTextureMapMode_Mirror: wrap = Nz::SamplerWrap::MirroredRepeat; break; case aiTextureMapMode_Wrap: wrap = Nz::SamplerWrap::Repeat; break; default: NazaraWarning("Assimp texture map mode 0x" + Nz::NumberToString(mapMode[0], 16) + " not handled"); break; } matData.SetParameter(wrapKey, static_cast(wrap)); } } }; ConvertColor(AI_MATKEY_COLOR_AMBIENT, Nz::MaterialData::AmbientColor); ConvertColor(AI_MATKEY_COLOR_DIFFUSE, Nz::MaterialData::DiffuseColor); ConvertColor(AI_MATKEY_COLOR_SPECULAR, Nz::MaterialData::SpecularColor); ConvertTexture(aiTextureType_DIFFUSE, Nz::MaterialData::DiffuseTexturePath, Nz::MaterialData::DiffuseWrap); ConvertTexture(aiTextureType_EMISSIVE, Nz::MaterialData::EmissiveTexturePath); ConvertTexture(aiTextureType_HEIGHT, Nz::MaterialData::HeightTexturePath); ConvertTexture(aiTextureType_NORMALS, Nz::MaterialData::NormalTexturePath); ConvertTexture(aiTextureType_OPACITY, Nz::MaterialData::AlphaTexturePath); ConvertTexture(aiTextureType_SPECULAR, Nz::MaterialData::SpecularTexturePath, Nz::MaterialData::SpecularWrap); aiString name; if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS) matData.SetParameter(Nz::MaterialData::Name, std::string(name.data, name.length)); int iValue; if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS) matData.SetParameter(Nz::MaterialData::FaceCulling, !iValue); matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(Nz::UInt32(materials.size()), std::move(matData)))).first; } subMesh->SetMaterialIndex(matIt->first); mesh->AddSubMesh(subMesh); mesh->SetMaterialCount(std::max(Nz::UInt32(materials.size()), 1)); for (const auto& pair : materials) mesh->SetMaterialData(pair.second.first, pair.second.second); } if (parameters.center) mesh->Recenter(); } return mesh; } namespace { const Nz::AnimationLoader::Entry* animationLoaderEntry = nullptr; const Nz::MeshLoader::Entry* meshLoaderEntry = nullptr; } extern "C" { NAZARA_EXPORT int PluginLoad() { Nz::Utility* utility = Nz::Utility::Instance(); NazaraAssert(utility, "utility module is not instancied"); Nz::AnimationLoader& animationLoader = utility->GetAnimationLoader(); animationLoaderEntry = animationLoader.RegisterLoader({ IsSupported, nullptr, nullptr, CheckAnimation, LoadAnimation }); Nz::MeshLoader& meshLoader = utility->GetMeshLoader(); meshLoaderEntry = meshLoader.RegisterLoader({ IsSupported, nullptr, nullptr, CheckMesh, LoadMesh }); return 1; } NAZARA_EXPORT void PluginUnload() { Nz::Utility* utility = Nz::Utility::Instance(); NazaraAssert(utility, "utility module is not instancied"); Nz::AnimationLoader& animationLoader = utility->GetAnimationLoader(); animationLoader.UnregisterLoader(animationLoaderEntry); animationLoaderEntry = nullptr; Nz::MeshLoader& meshLoader = utility->GetMeshLoader(); meshLoader.UnregisterLoader(meshLoaderEntry); meshLoaderEntry = nullptr; } }