// Copyright (C) 2014 Jérôme Leclercq // This file is part of the "Nazara Engine - Graphics module" // For conditions of distribution and use, see copyright notice in Config.hpp #include #include #include #include #include #include #include #include #include ///FIXME: Régler ce problème de dépendance aux ressources namespace { enum ResourceType { ResourceType_IndexBuffer, ResourceType_Material, ResourceType_Texture, ResourceType_VertexBuffer }; } NzForwardRenderQueue::~NzForwardRenderQueue() { Clear(true); } void NzForwardRenderQueue::AddDrawable(const NzDrawable* drawable) { #if NAZARA_GRAPHICS_SAFE if (!drawable) { NazaraError("Invalid drawable"); return; } #endif otherDrawables.push_back(drawable); } void NzForwardRenderQueue::AddLight(const NzLight* light) { #if NAZARA_GRAPHICS_SAFE if (!light) { NazaraError("Invalid light"); return; } #endif switch (light->GetLightType()) { case nzLightType_Directional: directionalLights.push_back(light); break; case nzLightType_Point: case nzLightType_Spot: lights.push_back(light); break; #ifdef NAZARA_DEBUG default: NazaraError("Light type not handled (0x" + NzString::Number(light->GetLightType(), 16) + ')'); #endif } } void NzForwardRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix) { if (material->IsEnabled(nzRendererParameter_Blend)) { unsigned int index = transparentModelData.size(); transparentModelData.resize(index+1); TransparentModelData& data = transparentModelData.back(); data.boundingSphere = NzSpheref(transformMatrix.GetTranslation() + meshAABB.GetCenter(), meshAABB.GetSquaredRadius()); data.material = material; data.meshData = meshData; data.transformMatrix = transformMatrix; transparentModels.push_back(index); } else { ModelBatches::iterator it = opaqueModels.find(material); if (it == opaqueModels.end()) { it = opaqueModels.insert(std::make_pair(material, ModelBatches::mapped_type())).first; material->AddResourceListener(this, ResourceType_Material); } bool& used = std::get<0>(it->second); bool& enableInstancing = std::get<1>(it->second); MeshInstanceContainer& meshMap = std::get<2>(it->second); used = true; MeshInstanceContainer::iterator it2 = meshMap.find(meshData); if (it2 == meshMap.end()) { it2 = meshMap.insert(std::make_pair(meshData, MeshInstanceContainer::mapped_type())).first; NzSpheref& squaredBoundingSphere = it2->second.first; squaredBoundingSphere.Set(meshAABB.GetSquaredBoundingSphere()); if (meshData.indexBuffer) meshData.indexBuffer->AddResourceListener(this, ResourceType_IndexBuffer); meshData.vertexBuffer->AddResourceListener(this, ResourceType_VertexBuffer); } std::vector& instances = it2->second.second; instances.push_back(transformMatrix); // Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ? if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT) enableInstancing = true; // Apparemment oui, activons l'instancing avec ce matériau } } void NzForwardRenderQueue::AddSprites(const NzMaterial* material, const NzVertexStruct_XYZ_Color_UV* vertices, unsigned int spriteCount, const NzTexture* overlay) { auto matIt = basicSprites.find(material); if (matIt == basicSprites.end()) { matIt = basicSprites.insert(std::make_pair(material, BasicSpriteBatches::mapped_type())).first; material->AddResourceListener(this, ResourceType_Material); } auto& overlayMap = matIt->second; auto overlayIt = overlayMap.find(overlay); if (overlayIt == overlayMap.end()) { overlayIt = overlayMap.insert(std::make_pair(overlay, BasicSpriteOverlayContainer::mapped_type())).first; if (overlay) overlay->AddResourceListener(this, ResourceType_Texture); } auto& spriteVector = overlayIt->second; spriteVector.push_back(SpriteChain_XYZ_Color_UV({vertices, spriteCount})); } void NzForwardRenderQueue::Clear(bool fully) { directionalLights.clear(); lights.clear(); otherDrawables.clear(); transparentModels.clear(); transparentModelData.clear(); if (fully) { for (auto& matPair : basicSprites) { const NzMaterial* material = matPair.first; material->RemoveResourceListener(this); auto& overlayMap = matPair.second; for (auto& overlayPair : overlayMap) { const NzTexture* overlay = overlayPair.first; if (overlay) overlay->RemoveResourceListener(this); } } basicSprites.clear(); for (auto& matPair : opaqueModels) { const NzMaterial* material = matPair.first; material->RemoveResourceListener(this); MeshInstanceContainer& instances = std::get<2>(matPair.second); for (auto& instanceIt : instances) { const NzMeshData& renderData = instanceIt.first; if (renderData.indexBuffer) renderData.indexBuffer->RemoveResourceListener(this); renderData.vertexBuffer->RemoveResourceListener(this); } } opaqueModels.clear(); } } void NzForwardRenderQueue::Sort(const NzAbstractViewer* viewer) { NzPlanef nearPlane = viewer->GetFrustum().GetPlane(nzFrustumPlane_Near); NzVector3f viewerNormal = viewer->GetForward(); std::sort(transparentModels.begin(), transparentModels.end(), [this, &nearPlane, &viewerNormal](unsigned int index1, unsigned int index2) { const NzSpheref& sphere1 = transparentModelData[index1].boundingSphere; const NzSpheref& sphere2 = transparentModelData[index2].boundingSphere; NzVector3f position1 = sphere1.GetNegativeVertex(viewerNormal); NzVector3f position2 = sphere2.GetNegativeVertex(viewerNormal); return nearPlane.Distance(position1) > nearPlane.Distance(position2); }); } bool NzForwardRenderQueue::OnResourceDestroy(const NzResource* resource, int index) { switch (index) { case ResourceType_IndexBuffer: { for (auto& modelPair : opaqueModels) { MeshInstanceContainer& meshes = std::get<2>(modelPair.second); for (auto it = meshes.begin(); it != meshes.end();) { const NzMeshData& renderData = it->first; if (renderData.indexBuffer == resource) it = meshes.erase(it); else ++it; } } break; } case ResourceType_Material: basicSprites.erase(static_cast(resource)); opaqueModels.erase(static_cast(resource)); break; case ResourceType_VertexBuffer: { for (auto& modelPair : opaqueModels) { MeshInstanceContainer& meshes = std::get<2>(modelPair.second); for (auto it = meshes.begin(); it != meshes.end();) { const NzMeshData& renderData = it->first; if (renderData.vertexBuffer == resource) it = meshes.erase(it); else ++it; } } break; } } return false; // Nous ne voulons plus recevoir d'évènement de cette ressource } void NzForwardRenderQueue::OnResourceReleased(const NzResource* resource, int index) { // La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche // des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources) switch (index) { case ResourceType_IndexBuffer: { for (auto& modelPair : opaqueModels) { MeshInstanceContainer& meshes = std::get<2>(modelPair.second); for (auto it = meshes.begin(); it != meshes.end();) { const NzMeshData& renderData = it->first; if (renderData.indexBuffer == resource) it = meshes.erase(it); else ++it; } } break; } case ResourceType_Material: { for (auto it = basicSprites.begin(); it != basicSprites.end(); ++it) { if (it->first == resource) { basicSprites.erase(it); break; } } for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it) { if (it->first == resource) { opaqueModels.erase(it); break; } } break; } case ResourceType_Texture: { for (auto matIt = basicSprites.begin(); matIt != basicSprites.end(); ++matIt) { auto& overlayMap = matIt->second; for (auto overlayIt = overlayMap.begin(); overlayIt != overlayMap.end(); ++overlayIt) { if (overlayIt->first == resource) { overlayMap.erase(overlayIt); break; } } } break; } case ResourceType_VertexBuffer: { for (auto& modelPair : opaqueModels) { MeshInstanceContainer& meshes = std::get<2>(modelPair.second); for (auto it = meshes.begin(); it != meshes.end();) { const NzMeshData& renderData = it->first; if (renderData.vertexBuffer == resource) it = meshes.erase(it); else ++it; } } break; } } } bool NzForwardRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2) { const NzUberShader* uberShader1 = mat1->GetShader(); const NzUberShader* uberShader2 = mat2->GetShader(); if (uberShader1 != uberShader2) return uberShader1 < uberShader2; const NzShader* shader1 = mat1->GetShaderInstance()->GetShader(); const NzShader* shader2 = mat2->GetShaderInstance()->GetShader(); if (shader1 != shader2) return shader1 < shader2; const NzTexture* diffuseMap1 = mat1->GetDiffuseMap(); const NzTexture* diffuseMap2 = mat2->GetDiffuseMap(); if (diffuseMap1 != diffuseMap2) return diffuseMap1 < diffuseMap2; return mat1 < mat2; } bool NzForwardRenderQueue::BatchedSpriteMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2) { const NzUberShader* uberShader1 = mat1->GetShader(); const NzUberShader* uberShader2 = mat2->GetShader(); if (uberShader1 != uberShader2) return uberShader1 < uberShader2; const NzShader* shader1 = mat1->GetShaderInstance()->GetShader(); const NzShader* shader2 = mat2->GetShaderInstance()->GetShader(); if (shader1 != shader2) return shader1 < shader2; const NzTexture* diffuseMap1 = mat1->GetDiffuseMap(); const NzTexture* diffuseMap2 = mat2->GetDiffuseMap(); if (diffuseMap1 != diffuseMap2) return diffuseMap1 < diffuseMap2; return mat1 < mat2; } bool NzForwardRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2) { const NzBuffer* buffer1; const NzBuffer* buffer2; buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr; buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr; if (buffer1 != buffer2) return buffer1 < buffer2; buffer1 = data1.vertexBuffer->GetBuffer(); buffer2 = data2.vertexBuffer->GetBuffer(); if (buffer1 != buffer2) return buffer1 < buffer2; return data1.primitiveMode < data2.primitiveMode; }