743 lines
16 KiB
C++
743 lines
16 KiB
C++
// Copyright (C) 2015 Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Mathematics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/Algorithm.hpp>
|
|
#include <Nazara/Core/StringStream.hpp>
|
|
#include <Nazara/Math/Algorithm.hpp>
|
|
#include <Nazara/Math/Box.hpp>
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
#define F(a) static_cast<T>(a)
|
|
|
|
namespace Nz
|
|
{
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Sphere
|
|
* \brief Math class that represents a sphere "S2" in a three dimensional euclidean space
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Sphere object from its center position and radius
|
|
*
|
|
* \param X X position
|
|
* \param Y Y position
|
|
* \param Z Z position
|
|
* \param Radius half of the diameter
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>::Sphere(T X, T Y, T Z, T Radius)
|
|
{
|
|
Set(X, Y, Z, Radius);
|
|
}
|
|
/*
|
|
template<typename T>
|
|
Sphere<T>::Sphere(const Circle<T>& circle)
|
|
{
|
|
Set(rect);
|
|
}
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Sphere object from its position and radius
|
|
*
|
|
* \param center Center of the sphere
|
|
* \param Radius Half of the diameter
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>::Sphere(const Vector3<T>& center, T Radius)
|
|
{
|
|
Set(center, Radius);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Sphere object from an array of four elements
|
|
*
|
|
* \param sphere[4] sphere[0] is X component, sphere[1] is Y component, sphere[2] is Z component and sphere[3] is radius
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>::Sphere(const T sphere[4])
|
|
{
|
|
Set(sphere);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Sphere object from another type of Sphere
|
|
*
|
|
* \param sphere Sphere of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Sphere<T>::Sphere(const Sphere<U>& sphere)
|
|
{
|
|
Set(sphere);
|
|
}
|
|
|
|
/*!
|
|
* \brief Tests whether the sphere contains the provided point inclusive of the edge of the sphere
|
|
* \return true if inclusive
|
|
*
|
|
* \param X X position of the point
|
|
* \param Y Y position of the point
|
|
* \param Z Z position of the point
|
|
*
|
|
* \see Contains
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::Contains(T X, T Y, T Z) const
|
|
{
|
|
return SquaredDistance(X, Y, Z) <= radius * radius;
|
|
}
|
|
|
|
/*!
|
|
* \brief Tests whether the sphere contains the provided box inclusive of the edge of the sphere
|
|
* \return true if all inclusive
|
|
*
|
|
* \param box Three dimensional box
|
|
*
|
|
* \see Contains
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::Contains(const Box<T>& box) const
|
|
{
|
|
if (box.GetMinimum().SquaredDistance(GetPosition()) <= radius * radius)
|
|
{
|
|
if (box.GetMaximum().SquaredDistance(GetPosition()) <= radius * radius)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Tests whether the sphere contains the provided point inclusive of the edge of the sphere
|
|
* \return true if inclusive
|
|
*
|
|
* \param point Position of the point
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::Contains(const Vector3<T>& point) const
|
|
{
|
|
return Contains(point.x, point.y, point.z);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the distance from the sphere to the point (is negative when the point is inside the sphere)
|
|
* \return Distance to the point
|
|
*
|
|
* \param X X position of the point
|
|
* \param Y Y position of the point
|
|
* \param Z Z position of the point
|
|
*
|
|
* \see SquaredDistance
|
|
*/
|
|
|
|
template<typename T>
|
|
T Sphere<T>::Distance(T X, T Y, T Z) const
|
|
{
|
|
return Distance({X, Y, Z});
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the distance from the sphere to the point (is negative when the point is inside the sphere)
|
|
* \return Distance to the point
|
|
*
|
|
* \param point Position of the point
|
|
*
|
|
* \see SquaredDistance
|
|
*/
|
|
|
|
template<typename T>
|
|
T Sphere<T>::Distance(const Vector3<T>& point) const
|
|
{
|
|
return Vector3f::Distance(point, GetPosition()) - radius;
|
|
}
|
|
|
|
/*!
|
|
* \brief Extends the sphere to contain the point in the boundary
|
|
* \return A reference to this sphere extended
|
|
*
|
|
* \param X X position of the point
|
|
* \param Y Y position of the point
|
|
* \param Z Z position of the point
|
|
*
|
|
* \see ExtendTo
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::ExtendTo(T X, T Y, T Z)
|
|
{
|
|
T distance = SquaredDistance(X, Y, Z);
|
|
if (distance > radius*radius)
|
|
radius = std::sqrt(distance);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Extends the sphere to contain the point in the boundary
|
|
* \return A reference to this sphere extended
|
|
*
|
|
* \param point Position of the point
|
|
*
|
|
* \see ExtendTo
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::ExtendTo(const Vector3<T>& point)
|
|
{
|
|
return ExtendTo(point.x, point.y, point.z);
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the negative vertex of one direction
|
|
* \return The position of the vertex on the sphere in the opposite way of the normal while considering the center
|
|
*
|
|
* \param normal Vector normalized indicating a direction
|
|
*
|
|
* \see GetPositiveVertex
|
|
*/
|
|
|
|
template<typename T>
|
|
Vector3<T> Sphere<T>::GetNegativeVertex(const Vector3<T>& normal) const
|
|
{
|
|
Vector3<T> neg(GetPosition());
|
|
neg -= normal * radius;
|
|
|
|
return neg;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets a Vector3 of the position
|
|
* \return The position of the center of the sphere
|
|
*/
|
|
|
|
template<typename T>
|
|
Vector3<T> Sphere<T>::GetPosition() const
|
|
{
|
|
return Vector3<T>(x, y, z);
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the positive vertex of one direction
|
|
* \return The position of the vertex on the sphere in the same way of the normal while considering the center
|
|
*
|
|
* \param normal Vector normalized indicating a direction
|
|
*
|
|
* \see GetNegativeVertex
|
|
*/
|
|
|
|
template<typename T>
|
|
Vector3<T> Sphere<T>::GetPositiveVertex(const Vector3<T>& normal) const
|
|
{
|
|
Vector3<T> pos(GetPosition());
|
|
pos += normal * radius;
|
|
|
|
return pos;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this sphere intersects a box
|
|
* \return true if the box intersects
|
|
*
|
|
* \param box Box to check
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::Intersect(const Box<T>& box) const
|
|
{
|
|
// Arvo's algorithm.
|
|
T squaredDistance = T(0.0);
|
|
if (x < box.x)
|
|
{
|
|
T diff = x - box.x;
|
|
squaredDistance += diff * diff;
|
|
}
|
|
else if (x > box.x + box.width)
|
|
{
|
|
T diff = x - (box.x + box.width);
|
|
squaredDistance += diff * diff;
|
|
}
|
|
|
|
if (y < box.y)
|
|
{
|
|
T diff = y - box.y;
|
|
squaredDistance += diff * diff;
|
|
}
|
|
else if (y > box.y + box.height)
|
|
{
|
|
T diff = y - (box.y + box.height);
|
|
squaredDistance += diff * diff;
|
|
}
|
|
|
|
if (z < box.z)
|
|
{
|
|
T diff = z - box.z;
|
|
squaredDistance += diff * diff;
|
|
}
|
|
else if (z > box.z + box.depth)
|
|
{
|
|
T diff = z - (box.z + box.depth);
|
|
squaredDistance += diff * diff;
|
|
}
|
|
|
|
return squaredDistance <= radius * radius;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this sphere intersects another sphere
|
|
* \return true if the spheres intersect or if one is in the other
|
|
*
|
|
* \param sphere Sphere to check
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::Intersect(const Sphere& sphere) const
|
|
{
|
|
return SquaredDistance(sphere.x, sphere.y, sphere.z) <= sphere.radius * sphere.radius;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether this sphere is valid
|
|
* \return true if the sphere has a strictly positive radius
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::IsValid() const
|
|
{
|
|
return radius > F(0.0);
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the sphere position (0, 0, 0) and radius 1
|
|
* \return A reference to this vector with position (0, 0, 0) and radius 1
|
|
*
|
|
* \see Unit
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::MakeUnit()
|
|
{
|
|
x = F(0.0);
|
|
y = F(0.0);
|
|
z = F(0.0);
|
|
radius = F(1.0);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the sphere position (0, 0, 0) and radius 0
|
|
* \return A reference to this vector with position (0, 0, 0) and radius 0
|
|
*
|
|
* \see Zero
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::MakeZero()
|
|
{
|
|
x = F(0.0);
|
|
y = F(0.0);
|
|
z = F(0.0);
|
|
radius = F(0.0);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the sphere with center and radius
|
|
* \return A reference to this sphere
|
|
*
|
|
* \param X X position
|
|
* \param Y Y position
|
|
* \param Z Z position
|
|
* \param Radius half of the diameter
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::Set(T X, T Y, T Z, T Radius)
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
z = Z;
|
|
radius = Radius;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the sphere with center and radius
|
|
* \return A reference to this sphere
|
|
*
|
|
* \param center Center of the sphere
|
|
* \param Radius Half of the diameter
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::Set(const Vector3<T>& center, T Radius)
|
|
{
|
|
x = center.x;
|
|
y = center.y;
|
|
z = center.z;
|
|
radius = Radius;
|
|
|
|
return *this;
|
|
}
|
|
/*
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::Set(const Circle<T>& circle)
|
|
{
|
|
x = circle.x;
|
|
y = circle.y;
|
|
z = F(0.0);
|
|
radius = circle.radius;
|
|
|
|
return *this;
|
|
}
|
|
*/
|
|
|
|
/*!
|
|
* \brief Sets the components of the sphere with center and radius from another
|
|
* \return A reference to this sphere
|
|
*
|
|
* \param sphere The other sphere
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::Set(const Sphere& sphere)
|
|
{
|
|
std::memcpy(this, &sphere, sizeof(Sphere));
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the sphere from an array of four elements
|
|
* \return A reference to this sphere
|
|
*
|
|
* \param sphere[4] sphere[0] is X position, sphere[1] is Y position, sphere[2] is Z position and sphere[3] is radius
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::Set(const T sphere[4])
|
|
{
|
|
x = sphere[0];
|
|
y = sphere[1];
|
|
z = sphere[2];
|
|
radius = sphere[3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the sphere from another type of Sphere
|
|
* \return A reference to this sphere
|
|
*
|
|
* \param sphere Sphere of type U to convert its components
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Sphere<T>& Sphere<T>::Set(const Sphere<U>& sphere)
|
|
{
|
|
x = F(sphere.x);
|
|
y = F(sphere.y);
|
|
z = F(sphere.z);
|
|
radius = F(sphere.radius);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the squared distance from the sphere to the point (can be negative if the point is inside the sphere)
|
|
* \return Squared distance to the point
|
|
*
|
|
* \param X X position of the point
|
|
* \param Y Y position of the point
|
|
* \param Z Z position of the point
|
|
*
|
|
* \see Distance
|
|
*/
|
|
template<typename T>
|
|
T Sphere<T>::SquaredDistance(T X, T Y, T Z) const
|
|
{
|
|
return SquaredDistance({X, Y, Z});
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the squared distance from the sphere to the point (can be negative if the point is inside the sphere)
|
|
* \return Squared distance to the point
|
|
*
|
|
* \param point Position of the point
|
|
*
|
|
* \see Distance
|
|
*/
|
|
template<typename T>
|
|
T Sphere<T>::SquaredDistance(const Vector3<T>& point) const
|
|
{
|
|
return Vector3f::Distance(point, GetPosition()) - radius * radius;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives a string representation
|
|
* \return A string representation of the object: "Sphere(x, y, z; radius)"
|
|
*/
|
|
|
|
template<typename T>
|
|
String Sphere<T>::ToString() const
|
|
{
|
|
StringStream ss;
|
|
|
|
return ss << "Sphere(" << x << ", " << y << ", " << z << "; " << radius << ')';
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the ith element of the sphere
|
|
* \return A reference to the ith element of the sphere
|
|
*
|
|
* \remark Access to index greather than 4 is undefined behavior
|
|
* \remark Produce a NazaraError if you try to acces to index greather than 4 with NAZARA_MATH_SAFE defined
|
|
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and one of you try to acces to index greather than 4
|
|
*/
|
|
|
|
template<typename T>
|
|
T& Sphere<T>::operator[](unsigned int i)
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (i >= 4)
|
|
{
|
|
StringStream ss;
|
|
ss << "Index out of range: (" << i << " >= 4)";
|
|
|
|
NazaraError(ss);
|
|
throw std::domain_error(ss.ToString());
|
|
}
|
|
#endif
|
|
|
|
return *(&x+i);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the ith element of the sphere
|
|
* \return A value to the ith element of the sphere
|
|
*
|
|
* \remark Access to index greather than 4 is undefined behavior
|
|
* \remark Produce a NazaraError if you try to acces to index greather than 4 with NAZARA_MATH_SAFE defined
|
|
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and one of you try to acces to index greather than 4
|
|
*/
|
|
|
|
template<typename T>
|
|
T Sphere<T>::operator[](unsigned int i) const
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (i >= 4)
|
|
{
|
|
StringStream ss;
|
|
ss << "Index out of range: (" << i << " >= 4)";
|
|
|
|
NazaraError(ss);
|
|
throw std::domain_error(ss.ToString());
|
|
}
|
|
#endif
|
|
|
|
return *(&x+i);
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the radius of the sphere with a scalar
|
|
* \return A sphere where the center is the same and radius is the product of this radius and the scalar
|
|
*
|
|
* \param scale The scalar to multiply radius with
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T> Sphere<T>::operator*(T scalar) const
|
|
{
|
|
return Sphere(x, y, z, radius * scalar);
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the radius of other sphere with a scalar
|
|
* \return A reference to this sphere where the center is the same and radius is the product of this radius and the scalar
|
|
*
|
|
* \param scale The scalar to multiply radius with
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T>& Sphere<T>::operator*=(T scalar)
|
|
{
|
|
radius *= scalar;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the sphere to other one
|
|
* \return true if the spheres are the same
|
|
*
|
|
* \param sphere Other sphere to compare with
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::operator==(const Sphere& sphere) const
|
|
{
|
|
return NumberEquals(x, sphere.x) && NumberEquals(y, sphere.y) && NumberEquals(z, sphere.z) &&
|
|
NumberEquals(radius, sphere.radius);
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the sphere to other one
|
|
* \return false if the spheres are the same
|
|
*
|
|
* \param sphere Other sphere to compare with
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Sphere<T>::operator!=(const Sphere& sphere) const
|
|
{
|
|
return !operator==(sphere);
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the sphere (0, 0, 0, 1)
|
|
* \return A sphere with center (0, 0, 0) and radius 1
|
|
*
|
|
* \see MakeUnit
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T> Sphere<T>::Unit()
|
|
{
|
|
Sphere sphere;
|
|
sphere.MakeUnit();
|
|
|
|
return sphere;
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates the sphere to other one with a factor of interpolation
|
|
* \return A new sphere which is the interpolation of two spheres
|
|
*
|
|
* \param from Initial sphere
|
|
* \param to Target sphere
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
|
|
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Zero() is returned
|
|
*
|
|
* \see Lerp
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T> Sphere<T>::Lerp(const Sphere& from, const Sphere& to, T interpolation)
|
|
{
|
|
#ifdef NAZARA_DEBUG
|
|
if (interpolation < F(0.0) || interpolation > F(1.0))
|
|
{
|
|
NazaraError("Interpolation must be in range [0..1] (Got " + String::Number(interpolation) + ')');
|
|
return Zero();
|
|
}
|
|
#endif
|
|
|
|
Sphere sphere;
|
|
sphere.x = Nz::Lerp(from.x, to.x, interpolation);
|
|
sphere.y = Nz::Lerp(from.y, to.y, interpolation);
|
|
sphere.z = Nz::Lerp(from.z, to.z, interpolation);
|
|
sphere.radius = Nz::Lerp(from.radius, to.radius, interpolation);
|
|
|
|
return sphere;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the sphere (0, 0, 0, 0)
|
|
* \return A sphere with center (0, 0, 0) and radius 0
|
|
*
|
|
* \see MakeZero
|
|
*/
|
|
|
|
template<typename T>
|
|
Sphere<T> Sphere<T>::Zero()
|
|
{
|
|
Sphere sphere;
|
|
sphere.MakeZero();
|
|
|
|
return sphere;
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes a Sphere
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param sphere Input Sphere
|
|
*/
|
|
template<typename T>
|
|
bool Serialize(SerializationContext& context, const Sphere<T>& sphere)
|
|
{
|
|
if (!Serialize(context, sphere.x))
|
|
return false;
|
|
|
|
if (!Serialize(context, sphere.y))
|
|
return false;
|
|
|
|
if (!Serialize(context, sphere.z))
|
|
return false;
|
|
|
|
if (!Serialize(context, sphere.radius))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes a Sphere
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param sphere Output Sphere
|
|
*/
|
|
template<typename T>
|
|
bool Unserialize(SerializationContext& context, Sphere<T>* sphere)
|
|
{
|
|
if (!Unserialize(context, &sphere->x))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &sphere->y))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &sphere->z))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &sphere->radius))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param sphere The sphere to output
|
|
*/
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Sphere<T>& sphere)
|
|
{
|
|
return out << sphere.ToString();
|
|
}
|
|
|
|
#undef F
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|