NazaraEngine/src/Nazara/Graphics/Loaders/OBJ/Loader.cpp

316 lines
9.8 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/Loaders/OBJ.hpp>
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Model.hpp>
#include <Nazara/Graphics/Loaders/OBJ/MTLParser.hpp>
#include <Nazara/Graphics/Loaders/OBJ/OBJParser.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/IndexMapper.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <limits>
#include <memory>
#include <unordered_map>
#include <Nazara/Graphics/Debug.hpp>
///TODO: N'avoir qu'un seul VertexBuffer communs à tous les meshes
namespace
{
bool IsSupported(const NzString& extension)
{
return (extension == "obj");
}
nzTernary Check(NzInputStream& stream, const NzModelParameters& parameters)
{
NazaraUnused(stream);
NazaraUnused(parameters);
return nzTernary_Unknown;
}
bool LoadMaterials(NzModel* model, const NzString& filePath, const NzMaterialParams& parameters, const NzString* materials, const NzOBJParser::Mesh* meshes, unsigned int meshCount)
{
NzFile file(filePath);
if (!file.Open(NzFile::ReadOnly | NzFile::Text))
{
NazaraError("Failed to open MTL file (" + file.GetPath() + ')');
return false;
}
NzMTLParser materialParser(file);
if (!materialParser.Parse())
{
NazaraError("MTL parser failed");
return false;
}
std::unordered_map<NzString, NzMaterialRef> materialCache;
NzString baseDir = file.GetDirectory();
for (unsigned int i = 0; i < meshCount; ++i)
{
const NzString& matName = materials[meshes[i].material];
const NzMTLParser::Material* mtlMat = materialParser.GetMaterial(matName);
if (!mtlMat)
{
NazaraWarning("MTL has no material \"" + matName + '"');
continue;
}
auto it = materialCache.find(matName);
if (it == materialCache.end())
{
NzMaterialRef material = NzMaterial::New();
material->SetShader(parameters.shaderName);
nzUInt8 alphaValue = static_cast<nzUInt8>(mtlMat->alpha*255.f);
NzColor ambientColor(mtlMat->ambient);
NzColor diffuseColor(mtlMat->diffuse);
NzColor specularColor(mtlMat->specular);
ambientColor.a = alphaValue;
diffuseColor.a = alphaValue;
specularColor.a = alphaValue;
material->SetAmbientColor(ambientColor);
material->SetDiffuseColor(diffuseColor);
material->SetSpecularColor(specularColor);
material->SetShininess(mtlMat->shininess);
bool isTranslucent = (alphaValue != 255);
if (parameters.loadAlphaMap && !mtlMat->alphaMap.IsEmpty())
{
if (material->SetAlphaMap(baseDir + mtlMat->alphaMap))
isTranslucent = true; // Une alpha map indique de la transparence
else
NazaraWarning("Failed to load alpha map (" + mtlMat->alphaMap + ')');
}
if (parameters.loadDiffuseMap && !mtlMat->diffuseMap.IsEmpty())
{
if (!material->SetDiffuseMap(baseDir + mtlMat->diffuseMap))
NazaraWarning("Failed to load diffuse map (" + mtlMat->diffuseMap + ')');
}
if (parameters.loadSpecularMap && !mtlMat->specularMap.IsEmpty())
{
if (!material->SetSpecularMap(baseDir + mtlMat->specularMap))
NazaraWarning("Failed to load specular map (" + mtlMat->specularMap + ')');
}
// Si nous avons une alpha map ou des couleurs transparentes,
// nous devons configurer le matériau pour accepter la transparence au mieux
if (isTranslucent)
{
// On paramètre le matériau pour accepter la transparence au mieux
material->Enable(nzRendererParameter_Blend, true);
material->Enable(nzRendererParameter_DepthWrite, false);
material->SetDstBlend(nzBlendFunc_InvSrcAlpha);
material->SetSrcBlend(nzBlendFunc_SrcAlpha);
}
it = materialCache.emplace(matName, std::move(material)).first;
}
model->SetMaterial(meshes[i].material, it->second);
}
}
bool Load(NzModel* model, NzInputStream& stream, const NzModelParameters& parameters)
{
NzOBJParser parser(stream);
if (!parser.Parse())
{
NazaraError("OBJ parser failed");
return false;
}
NzMeshRef mesh = NzMesh::New();
if (!mesh->CreateStatic()) // Ne devrait jamais échouer
{
NazaraInternalError("Failed to create mesh");
return false;
}
const NzString* materials = parser.GetMaterials();
const NzVector4f* positions = parser.GetPositions();
const NzVector3f* normals = parser.GetNormals();
const NzVector3f* texCoords = parser.GetTexCoords();
const NzOBJParser::Mesh* meshes = parser.GetMeshes();
unsigned int meshCount = parser.GetMeshCount();
NazaraAssert(materials != nullptr && positions != nullptr && normals != nullptr &&
texCoords != nullptr && meshes != nullptr && meshCount > 0,
"Invalid OBJParser output");
// Un conteneur temporaire pour contenir les indices de face avant triangulation
std::vector<unsigned int> faceIndices(3); // Comme il y aura au moins trois sommets
for (unsigned int i = 0; i < meshCount; ++i)
{
unsigned int faceCount = meshes[i].faces.size();
if (faceCount == 0)
continue;
std::vector<unsigned int> indices;
indices.reserve(faceCount*3); // Pire cas si les faces sont des triangles
// Afin d'utiliser OBJParser::FaceVertex comme clé dans un unordered_map,
// nous devons fournir un foncteur de hash ainsi qu'un foncteur de comparaison
// Hash
struct FaceVertexHasher
{
std::size_t operator()(const NzOBJParser::FaceVertex& o) const
{
std::size_t seed = 0;
NzHashCombine(seed, o.normal);
NzHashCombine(seed, o.position);
NzHashCombine(seed, o.texCoord);
return seed;
}
};
// Comparaison
struct FaceVertexComparator
{
bool operator()(const NzOBJParser::FaceVertex& lhs, const NzOBJParser::FaceVertex& rhs) const
{
return lhs.normal == rhs.normal &&
lhs.position == rhs.position &&
lhs.texCoord == rhs.texCoord;
}
};
std::unordered_map<NzOBJParser::FaceVertex, unsigned int, FaceVertexHasher, FaceVertexComparator> vertices;
unsigned int vertexCount = 0;
for (unsigned int j = 0; j < faceCount; ++j)
{
unsigned int faceVertexCount = meshes[i].faces[j].vertices.size();
faceIndices.resize(faceVertexCount);
for (unsigned int k = 0; k < faceVertexCount; ++k)
{
const NzOBJParser::FaceVertex& vertex = meshes[i].faces[j].vertices[k];
auto it = vertices.find(vertex);
if (it == vertices.end())
it = vertices.emplace(vertex, vertexCount++).first;
faceIndices[k] = it->second;
}
for (unsigned int k = 1; k < faceVertexCount-1; ++k)
{
indices.push_back(faceIndices[0]);
indices.push_back(faceIndices[k]);
indices.push_back(faceIndices[k+1]);
}
}
// Création des buffers
NzIndexBufferRef indexBuffer = NzIndexBuffer::New(vertexCount > std::numeric_limits<nzUInt16>::max(), indices.size(), parameters.mesh.storage, nzBufferUsage_Static);
NzVertexBufferRef vertexBuffer = NzVertexBuffer::New(NzVertexDeclaration::Get(nzVertexLayout_XYZ_Normal_UV_Tangent), vertexCount, parameters.mesh.storage, nzBufferUsage_Static);
// Remplissage des indices
NzIndexMapper indexMapper(indexBuffer, nzBufferAccess_WriteOnly);
for (unsigned int j = 0; j < indices.size(); ++j)
indexMapper.Set(j, indices[j]);
indexMapper.Unmap(); // Pour laisser les autres tâches affecter l'index buffer
// Remplissage des vertices
bool hasNormals = true;
bool hasTexCoords = true;
NzBufferMapper<NzVertexBuffer> vertexMapper(vertexBuffer, nzBufferAccess_WriteOnly);
NzMeshVertex* meshVertices = static_cast<NzMeshVertex*>(vertexMapper.GetPointer());
for (auto& vertexPair : vertices)
{
const NzOBJParser::FaceVertex& vertexIndices = vertexPair.first;
unsigned int index = vertexPair.second;
NzMeshVertex& vertex = meshVertices[index];
const NzVector4f& vec = positions[vertexIndices.position];
vertex.position.Set(vec.x, vec.y, vec.z);
vertex.position *= parameters.mesh.scale/vec.w;
if (vertexIndices.normal >= 0)
vertex.normal = normals[vertexIndices.normal];
else
hasNormals = false;
if (vertexIndices.texCoord >= 0)
{
const NzVector3f& uvw = texCoords[vertexIndices.texCoord];
vertex.uv.Set(uvw.x, (parameters.mesh.flipUVs) ? 1.f - uvw.y : uvw.y); // Inversion des UVs si demandé
}
else
hasTexCoords = false;
}
vertexMapper.Unmap();
NzStaticMeshRef subMesh = NzStaticMesh::New(mesh);
if (!subMesh->Create(vertexBuffer))
{
NazaraError("Failed to create StaticMesh");
continue;
}
if (parameters.mesh.optimizeIndexBuffers)
indexBuffer->Optimize();
subMesh->GenerateAABB();
subMesh->SetIndexBuffer(indexBuffer);
subMesh->SetMaterialIndex(meshes[i].material);
subMesh->SetPrimitiveMode(nzPrimitiveMode_TriangleList);
// Ce que nous pouvons générer dépend des données à disposition (par exemple les tangentes nécessitent des coordonnées de texture)
if (hasNormals && hasTexCoords)
subMesh->GenerateTangents();
else if (hasTexCoords)
subMesh->GenerateNormalsAndTangents();
else
subMesh->GenerateNormals();
mesh->AddSubMesh(meshes[i].name + '_' + materials[meshes[i].material], subMesh);
}
mesh->SetMaterialCount(parser.GetMaterialCount());
if (parameters.mesh.center)
mesh->Recenter();
model->SetMesh(mesh);
// On charge les matériaux si demandé
NzString mtlLib = parser.GetMtlLib();
if (parameters.loadMaterials && !mtlLib.IsEmpty())
{
NzErrorFlags flags(nzErrorFlag_ThrowExceptionDisabled);
LoadMaterials(model, stream.GetDirectory() + mtlLib, parameters.material, materials, meshes, meshCount);
}
return true;
}
}
void NzLoaders_OBJ_Register()
{
NzModelLoader::RegisterLoader(IsSupported, Check, Load);
}
void NzLoaders_OBJ_Unregister()
{
NzModelLoader::UnregisterLoader(IsSupported, Check, Load);
}