NazaraEngine/include/Nazara/Math/Vector2.inl

1086 lines
23 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <cstring>
#include <limits>
#include <stdexcept>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
namespace Nz
{
/*!
* \ingroup math
* \class Nz::Vector2
* \brief Math class that represents an element of the two dimensional vector space
*/
/*!
* \brief Constructs a Vector2 object from its coordinates
*
* \param X X component
* \param Y Y component
*/
template<typename T>
Vector2<T>::Vector2(T X, T Y)
{
Set(X, Y);
}
/*!
* \brief Constructs explicitely a Vector2 object from its "scale"
*
* \param scale X component = Y component
*/
template<typename T>
Vector2<T>::Vector2(T scale)
{
Set(scale);
}
/*!
* \brief Constructs a Vector2 object from an array of two elements
*
* \param vec[2] vec[0] is X component and vec[1] is Y component
*/
template<typename T>
Vector2<T>::Vector2(const T vec[2])
{
Set(vec);
}
/*!
* \brief Constructs a Vector2 object from another type of Vector2
*
* \param vec Vector of type U to convert to type T
*/
template<typename T>
template<typename U>
Vector2<T>::Vector2(const Vector2<U>& vec)
{
Set(vec);
}
/*!
* \brief Constructs a Vector2 object from a Vector3
*
* \param vec Vector3 where only the first two components are taken
*/
template<typename T>
Vector2<T>::Vector2(const Vector3<T>& vec)
{
Set(vec);
}
/*!
* \brief Constructs a Vector2 object from a Vector4
*
* \param vec Vector4 where only the first two components are taken
*/
template<typename T>
Vector2<T>::Vector2(const Vector4<T>& vec)
{
Set(vec);
}
/*!
* \brief Calculates the absolute dot (scalar) product with two vectors
* \return The dot product with absolutes values on each component
*
* \param vec The other vector to calculate the absolute dot product with
*
* \see DotProduct
*/
template<typename T>
T Vector2<T>::AbsDotProduct(const Vector2& vec) const
{
return std::abs(x * vec.x) + std::abs(y * vec.y);
}
/*!
* \brief Calculates the angle between two vectors in orthonormal basis
* \return The angle unit depends of NAZARA_MATH_ANGLE_RADIAN, you may want to normalize it to the range 0..2*pi with NormalizeAngle
*
* \param vec The other vector to measure the angle with
*
* \remark The vectors do not need to be normalised and if the angle is normalised, it represents the rotation from *this to vec in anti-clockwise direction
*
* \see NormalizeAngle
*/
template<typename T>
T Vector2<T>::AngleBetween(const Vector2& vec) const
{
return FromRadians(std::atan2(vec.y, vec.x) - std::atan2(y, x));
}
/*!
* \brief Calculates the distance between two vectors
* \return The metric distance between two vectors with euclidean norm
*
* \param vec The other vector to measure the distance with
*
* \see SquaredDistance
*/
template<typename T>
T Vector2<T>::Distance(const Vector2& vec) const
{
return std::sqrt(SquaredDistance(vec));
}
/*!
* \brief Calculates the distance between two vectors
* \return The metric distance in float between two vectors with euclidean norm
*
* \param vec The other vector to measure the distance with
*/
template<typename T>
float Vector2<T>::Distancef(const Vector2& vec) const
{
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
}
/*!
* \brief Calculates the dot (scalar) product with two vectors
* \return The value of the dot product
*
* \param vec The other vector to calculate the dot product with
*
* \see AbsDotProduct, DotProduct
*/
template<typename T>
T Vector2<T>::DotProduct(const Vector2& vec) const
{
return x*vec.x + y*vec.y;
}
/*!
* \brief Calculates the length (magnitude) of the vector
* \return The length of the vector
*
* \see GetSquaredLength
*/
template<typename T>
T Vector2<T>::GetLength() const
{
return static_cast<T>(std::sqrt(GetSquaredLength()));
}
/*!
* \brief Calculates the length (magnitude) of the vector
* \return The length in float of the vector
*/
template<typename T>
float Vector2<T>::GetLengthf() const
{
return std::sqrt(static_cast<float>(GetSquaredLength()));
}
/*!
* \brief Gets a copy normalized of the vector
* \return A new vector which is the vector normalized
*
* \param length Optional argument to obtain the length's ratio of the vector and the unit-length
*
* \remark If this vector is (0, 0), then it returns (0, 0) and length is 0
*
* \see Normalize
*/
template<typename T>
Vector2<T> Vector2<T>::GetNormal(T* length) const
{
Vector2 vec(*this);
vec.Normalize(length);
return vec;
}
/*!
* \brief Calculates the squared length (magnitude) of the vector
* \return The squared length of the vector
*
* \see GetLength
*/
template<typename T>
T Vector2<T>::GetSquaredLength() const
{
return x*x + y*y;
}
/*!
* \brief Makes the vector (1, 1)
* \return A reference to this vector with components (1, 1)
*
* \see Unit
*/
template<typename T>
Vector2<T>& Vector2<T>::MakeUnit()
{
return Set(F(1.0), F(1.0));
}
/*!
* \brief Makes the vector (1, 0)
* \return A reference to this vector with components (1, 0)
*
* \see UnitX
*/
template<typename T>
Vector2<T>& Vector2<T>::MakeUnitX()
{
return Set(F(1.0), F(0.0));
}
/*!
* \brief Makes the vector (0, 1)
* \return A reference to this vector with components (0, 1)
*
* \see UnitY
*/
template<typename T>
Vector2<T>& Vector2<T>::MakeUnitY()
{
return Set(F(0.0), F(1.0));
}
/*!
* \brief Makes the vector (0, 0)
* \return A reference to this vector with components (0, 0)
*
* \see Zero
*/
template<typename T>
Vector2<T>& Vector2<T>::MakeZero()
{
return Set(F(0.0), F(0.0));
}
/*!
* \brief Sets this vector's components to the maximum of its own and other components
* \return A reference to this vector with replaced values with the corresponding max value
*
* \param vec Other vector to compare the components with
*
* \see Minimize
*/
template<typename T>
Vector2<T>& Vector2<T>::Maximize(const Vector2& vec)
{
if (vec.x > x)
x = vec.x;
if (vec.y > y)
y = vec.y;
return *this;
}
/*!
* \brief Sets this vector's components to the minimum of its own and other components
* \return A reference to this vector with replaced values with the corresponding min value
*
* \param vec Other vector to compare the components with
*
* \see Maximize
*/
template<typename T>
Vector2<T>& Vector2<T>::Minimize(const Vector2& vec)
{
if (vec.x < x)
x = vec.x;
if (vec.y < y)
y = vec.y;
return *this;
}
/*!
* \brief Normalizes the current vector
* \return A reference to this vector
*
* \param length Optional argument to obtain the length's ratio of the vector and the unit-length
*
* \remark If the vector is (0, 0), then it returns (0, 0) and length is 0
*
* \see GetNormal
*/
template<typename T>
Vector2<T>& Vector2<T>::Normalize(T* length)
{
T norm = GetLength();
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
x *= invNorm;
y *= invNorm;
}
if (length)
*length = norm;
return *this;
}
/*!
* \brief Sets the components of the vector
* \return A reference to this vector
*
* \param X X component
* \param Y Y component
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(T X, T Y)
{
x = X;
y = Y;
return *this;
}
/*!
* \brief Sets the components of the vector from a "scale"
* \return A reference to this vector
*
* \param scale X component = Y component
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(T scale)
{
x = scale;
y = scale;
return *this;
}
/*!
* \brief Sets the components of the vector from an array of two elements
* \return A reference to this vector
*
* \param vec[2] vec[0] is X component and vec[1] is Y component
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(const T vec[2])
{
std::memcpy(&x, vec, 2*sizeof(T));
return *this;
}
/*!
* \brief Sets the components of the vector from another vector
* \return A reference to this vector
*
* \param vec The other vector
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(const Vector2& vec)
{
std::memcpy(this, &vec, sizeof(Vector2));
return *this;
}
/*!
* \brief Sets the components of the vector from another type of Vector2
* \return A reference to this vector
*
* \param vec Vector of type U to convert its components
*/
template<typename T>
template<typename U>
Vector2<T>& Vector2<T>::Set(const Vector2<U>& vec)
{
x = F(vec.x);
y = F(vec.y);
return *this;
}
/*!
* \brief Sets the components of the vector from a Vector3
* \return A reference to this vector
*
* \param vec Vector3 where only the first two components are taken
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(const Vector3<T>& vec)
{
x = vec.x;
y = vec.y;
return *this;
}
/*!
* \brief Sets the components of the vector from a Vector4
* \return A reference to this vector
*
* \param vec Vector4 where only the first two components are taken
*/
template<typename T>
Vector2<T>& Vector2<T>::Set(const Vector4<T>& vec)
{
x = vec.x;
y = vec.y;
return *this;
}
/*!
* \brief Calculates the squared distance between two vectors
* \return The metric distance between two vectors with the squared euclidean norm
*
* \param vec The other vector to measure the distance with
*
* \see Distance
*/
template<typename T>
T Vector2<T>::SquaredDistance(const Vector2& vec) const
{
return (*this - vec).GetSquaredLength();
}
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Vector2(x, y)"
*/
template<typename T>
String Vector2<T>::ToString() const
{
StringStream ss;
return ss << "Vector2(" << x << ", " << y << ')';
}
/*!
* \brief Converts vector to pointer to its own data
* \return A pointer to the own data
*
* \remark Access to index greather than 1 is undefined behavior
*/
template<typename T>
Vector2<T>::operator T* ()
{
return &x;
}
/*!
* \brief Converts vector to const pointer to its own data
* \return A constant pointer to the own data
*
* \remark Access to index greather than 1 is undefined behavior
*/
template<typename T>
Vector2<T>::operator const T* () const
{
return &x;
}
/*!
* \brief Helps to represent the sign of the vector
* \return A constant reference to this vector
*/
template<typename T>
const Vector2<T>& Vector2<T>::operator+() const
{
return *this;
}
/*!
* \brief Negates the components of the vector
* \return A constant reference to this vector with negate components
*/
template<typename T>
Vector2<T> Vector2<T>::operator-() const
{
return Vector2(-x, -y);
}
/*!
* \brief Adds the components of the vector with other vector
* \return A vector where components are the sum of this vector and the other one
*
* \param vec The other vector to add components with
*/
template<typename T>
Vector2<T> Vector2<T>::operator+(const Vector2& vec) const
{
return Vector2(x + vec.x, y + vec.y);
}
/*!
* \brief Substracts the components of the vector with other vector
* \return A vector where components are the difference of this vector and the other one
*
* \param vec The other vector to substract components with
*/
template<typename T>
Vector2<T> Vector2<T>::operator-(const Vector2& vec) const
{
return Vector2(x - vec.x, y - vec.y);
}
/*!
* \brief Multiplies the components of the vector with other vector
* \return A vector where components are the product of this vector and the other one
*
* \param vec The other vector to multiply components with
*/
template<typename T>
Vector2<T> Vector2<T>::operator*(const Vector2& vec) const
{
return Vector2(x * vec.x, y * vec.y);
}
/*!
* \brief Multiplies the components of the vector with a scalar
* \return A vector where components are the product of this vector and the scalar
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Vector2<T> Vector2<T>::operator*(T scale) const
{
return Vector2(x * scale, y * scale);
}
/*!
* \brief Divides the components of the vector with other vector
* \return A vector where components are the quotient of this vector and the other one
*
* \param vec The other vector to divide components with
*
* \remark Produce a NazaraError if one of the vec components is null with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and one of the vec components is null
*/
template<typename T>
Vector2<T> Vector2<T>::operator/(const Vector2& vec) const
{
#if NAZARA_MATH_SAFE
if (NumberEquals(vec.x, F(0.0)) || NumberEquals(vec.y, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Vector2(x / vec.x, y / vec.y);
}
/*!
* \brief Divides the components of the vector with a scalar
* \return A vector where components are the quotient of this vector and the scalar
*
* \param scale The scalar to divide components with
*
* \remark Produce a NazaraError if scale is null with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and scale is null
*/
template<typename T>
Vector2<T> Vector2<T>::operator/(T scale) const
{
#if NAZARA_MATH_SAFE
if (NumberEquals(scale, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Vector2(x / scale, y / scale);
}
/*!
* \brief Adds the components of other vector to this vector
* \return A reference to this vector where components are the sum of this vector and the other one
*
* \param vec The other vector to add components with
*/
template<typename T>
Vector2<T>& Vector2<T>::operator+=(const Vector2& vec)
{
x += vec.x;
y += vec.y;
return *this;
}
/*!
* \brief Substracts the components of other vector to this vector
* \return A reference to this vector where components are the difference of this vector and the other one
*
* \param vec The other vector to substract components with
*/
template<typename T>
Vector2<T>& Vector2<T>::operator-=(const Vector2& vec)
{
x -= vec.x;
y -= vec.y;
return *this;
}
/*!
* \brief Multiplies the components of other vector to this vector
* \return A reference to this vector where components are the product of this vector and the other one
*
* \param vec The other vector to multiply components with
*/
template<typename T>
Vector2<T>& Vector2<T>::operator*=(const Vector2& vec)
{
x *= vec.x;
y *= vec.y;
return *this;
}
/*!
* \brief Multiplies the components of other vector with a scalar
* \return A reference to this vector where components are the product of this vector and the scalar
*
* \param vec The other vector to multiply components with
*/
template<typename T>
Vector2<T>& Vector2<T>::operator*=(T scale)
{
x *= scale;
y *= scale;
return *this;
}
/*!
* \brief Multiplies the components of other vector to this vector
* \return A reference to this vector where components are the quotient of this vector and the other one
*
* \param vec The other vector to multiply components with
*
* \remark Produce a NazaraError if one of the vec components is null with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and one of the vec components is null
*/
template<typename T>
Vector2<T>& Vector2<T>::operator/=(const Vector2& vec)
{
#if NAZARA_MATH_SAFE
if (NumberEquals(vec.x, F(0.0)) || NumberEquals(vec.y, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
x /= vec.x;
y /= vec.y;
return *this;
}
/*!
* \brief Divides the components of other vector with a scalar
* \return A reference to this vector where components are the quotient of this vector and the scalar
*
* \param vec The other vector to divide components with
*
* \remark Produce a NazaraError if scale is null with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and scale is null
*/
template<typename T>
Vector2<T>& Vector2<T>::operator/=(T scale)
{
#if NAZARA_MATH_SAFE
if (NumberEquals(scale, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
x /= scale;
y /= scale;
return *this;
}
/*!
* \brief Compares the vector to other one
* \return true if the vectors are the same
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator==(const Vector2& vec) const
{
return NumberEquals(x, vec.x) &&
NumberEquals(y, vec.y);
}
/*!
* \brief Compares the vector to other one
* \return false if the vectors are the same
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator!=(const Vector2& vec) const
{
return !operator==(vec);
}
/*!
* \brief Compares the vector to other one
* \return true if this vector has its first components inferior to the other ones
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator<(const Vector2& vec) const
{
if (x == vec.x)
return y < vec.y;
else
return x < vec.x;
}
/*!
* \brief Compares the vector to other one
* \return true if this vector has its first components inferior or equal to the other ones
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator<=(const Vector2& vec) const
{
if (x == vec.x)
return y <= vec.y;
else
return x < vec.x;
}
/*!
* \brief Compares the vector to other one
* \return true if this vector has its first components superior to the other ones
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator>(const Vector2& vec) const
{
return !operator<=(vec);
}
/*!
* \brief Compares the vector to other one
* \return true if this vector has its first components superior or equal to the other ones
*
* \param vec Other vector to compare with
*/
template<typename T>
bool Vector2<T>::operator>=(const Vector2& vec) const
{
return !operator<(vec);
}
/*!
* \brief Calculates the dot (scalar) product with two vectors
* \return The value of the dot product
*
* \param vec1 The first vector to calculate the dot product with
* \param vec2 The second vector to calculate the dot product with
*
* \see AbsDotProduct, DotProduct
*/
template<typename T>
T Vector2<T>::DotProduct(const Vector2& vec1, const Vector2& vec2)
{
return vec1.DotProduct(vec2);
}
/*!
* \brief Interpolates the vector to other one with a factor of interpolation
* \return A new vector which is the interpolation of two vectors
*
* \param from Initial vector
* \param to Target vector
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
*
* \see Lerp
*/
template<typename T>
Vector2<T> Vector2<T>::Lerp(const Vector2& from, const Vector2& to, T interpolation)
{
Vector2 dummy;
dummy.x = Nz::Lerp(from.x, to.x, interpolation);
dummy.y = Nz::Lerp(from.y, to.y, interpolation);
return dummy;
}
/*!
* \brief Gives the normalized vector
* \return A normalized vector from the vec
*
* \param vec Vector to normalize
*
* \remark If the vector is (0, 0), then it returns (0, 0)
*
* \see GetNormal
*/
template<typename T>
Vector2<T> Vector2<T>::Normalize(const Vector2& vec)
{
return vec.GetNormal();
}
/*!
* \brief Shorthand for the vector (1, 1)
* \return A vector with components (1, 1)
*
* \see MakeUnit
*/
template<typename T>
Vector2<T> Vector2<T>::Unit()
{
Vector2 vector;
vector.MakeUnit();
return vector;
}
/*!
* \brief Shorthand for the vector (1, 0)
* \return A vector with components (1, 0)
*
* \see MakeUnitX
*/
template<typename T>
Vector2<T> Vector2<T>::UnitX()
{
Vector2 vector;
vector.MakeUnitX();
return vector;
}
/*!
* \brief Shorthand for the vector (0, 1)
* \return A vector with components (0, 1)
*
* \see MakeUnitY
*/
template<typename T>
Vector2<T> Vector2<T>::UnitY()
{
Vector2 vector;
vector.MakeUnitY();
return vector;
}
/*!
* \brief Shorthand for the vector (0, 0)
* \return A vector with components (0, 0)
*
* \see MakeZero
*/
template<typename T>
Vector2<T> Vector2<T>::Zero()
{
Vector2 vector;
vector.MakeZero();
return vector;
}
/*!
* \brief Serializes a Vector2
* \return true if successfully serialized
*
* \param context Serialization context
* \param vector Input Vector2
*/
template<typename T>
bool Serialize(SerializationContext& context, const Vector2<T>& vector)
{
if (!Serialize(context, vector.x))
return false;
if (!Serialize(context, vector.y))
return false;
return true;
}
/*!
* \brief Unserializes a Vector2
* \return true if successfully unserialized
*
* \param context Serialization context
* \param vector Output Vector2
*/
template<typename T>
bool Unserialize(SerializationContext& context, Vector2<T>* vector)
{
if (!Unserialize(context, &vector->x))
return false;
if (!Unserialize(context, &vector->y))
return false;
return true;
}
}
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param vec The vector to output
*/
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Vector2<T>& vec)
{
return out << vec.ToString();
}
/*!
* \brief Multiplies the components of the vector with a scalar
* \return A vector where components are the product of this vector and the scalar
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Nz::Vector2<T> operator*(T scale, const Nz::Vector2<T>& vec)
{
return Nz::Vector2<T>(scale * vec.x, scale * vec.y);
}
/*!
* \brief Divides the components of the vector with a scalar
* \return A vector where components are the quotient of this vector and the scalar
*
* \param scale The scalar to divide components with
*
* \remark Produce a NazaraError if scale is null with NAZARA_MATH_SAFE defined
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and scale is null
*/
template<typename T>
Nz::Vector2<T> operator/(T scale, const Nz::Vector2<T>& vec)
{
#if NAZARA_MATH_SAFE
if (Nz::NumberEquals(vec.x, F(0.0)) || Nz::NumberEquals(vec.y, F(0.0)))
{
Nz::String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Nz::Vector2<T>(scale / vec.x, scale / vec.y);
}
namespace std
{
template<class T>
struct hash<Nz::Vector2<T>>
{
/*!
* \brief Specialisation of std to hash
* \return Result of the hash
*
* \param v Vector2 to hash
*/
std::size_t operator()(const Nz::Vector2<T>& v) const
{
std::size_t seed {};
Nz::HashCombine(seed, v.x);
Nz::HashCombine(seed, v.y);
return seed;
}
};
}
#undef F
#include <Nazara/Core/DebugOff.hpp>