NazaraEngine/src/Nazara/Physics2D/RigidBody2D.cpp

710 lines
18 KiB
C++

// Copyright (C) 2022 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
// This file is part of the "Nazara Engine - Physics2D module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics2D/RigidBody2D.hpp>
#include <Nazara/Physics2D/Arbiter2D.hpp>
#include <Nazara/Physics2D/PhysWorld2D.hpp>
#include <chipmunk/chipmunk.h>
#include <chipmunk/chipmunk_private.h>
#include <algorithm>
#include <cmath>
#include <Nazara/Physics2D/Debug.hpp>
namespace Nz
{
RigidBody2D::RigidBody2D(PhysWorld2D* world, float mass) :
RigidBody2D(world, mass, nullptr)
{
}
RigidBody2D::RigidBody2D(PhysWorld2D* world, float mass, std::shared_ptr<Collider2D> geom) :
m_positionOffset(Vector2f::Zero()),
m_geom(),
m_userData(nullptr),
m_world(world),
m_isRegistered(false),
m_isSimulationEnabled(true),
m_isStatic(false),
m_gravityFactor(1.f),
m_mass(mass)
{
NazaraAssert(m_world, "Invalid world");
m_handle = Create(mass);
SetGeom(std::move(geom));
}
RigidBody2D::RigidBody2D(const RigidBody2D& object) :
m_positionOffset(object.m_positionOffset),
m_geom(object.m_geom),
m_userData(object.m_userData),
m_world(object.m_world),
m_isRegistered(false),
m_isSimulationEnabled(true),
m_isStatic(object.m_isStatic),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.GetMass())
{
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
m_handle = Create(m_mass, object.GetMomentOfInertia());
SetGeom(object.GetGeom(), false, false);
CopyBodyData(object.GetHandle(), m_handle);
for (std::size_t i = 0; i < m_shapes.size(); ++i)
{
CopyShapeData(object.m_shapes[i], m_shapes[i]);
m_shapes[i]->bb = cpShapeCacheBB(object.m_shapes[i]);
}
}
RigidBody2D::RigidBody2D(RigidBody2D&& object) noexcept :
OnRigidBody2DMove(std::move(object.OnRigidBody2DMove)),
OnRigidBody2DRelease(std::move(object.OnRigidBody2DRelease)),
m_positionOffset(std::move(object.m_positionOffset)),
m_shapes(std::move(object.m_shapes)),
m_geom(std::move(object.m_geom)),
m_handle(object.m_handle),
m_userData(object.m_userData),
m_world(object.m_world),
m_isRegistered(object.m_isRegistered),
m_isSimulationEnabled(object.m_isSimulationEnabled),
m_isStatic(object.m_isStatic),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.m_mass)
{
cpBodySetUserData(m_handle, this);
for (cpShape* shape : m_shapes)
cpShapeSetUserData(shape, this);
object.m_handle = nullptr;
OnRigidBody2DMove(&object, this);
}
RigidBody2D::~RigidBody2D()
{
OnRigidBody2DRelease(this);
Destroy();
}
void RigidBody2D::AddForce(const Vector2f& force, CoordSys coordSys)
{
return AddForce(force, GetMassCenter(coordSys), coordSys);
}
void RigidBody2D::AddForce(const Vector2f& force, const Vector2f& point, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys::Global:
cpBodyApplyForceAtWorldPoint(m_handle, cpv(force.x, force.y), cpv(point.x, point.y));
break;
case CoordSys::Local:
cpBodyApplyForceAtLocalPoint(m_handle, cpv(force.x, force.y), cpv(point.x, point.y));
break;
}
}
void RigidBody2D::AddImpulse(const Vector2f& impulse, CoordSys coordSys)
{
return AddImpulse(impulse, GetMassCenter(coordSys), coordSys);
}
void RigidBody2D::AddImpulse(const Vector2f& impulse, const Vector2f& point, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys::Global:
cpBodyApplyImpulseAtWorldPoint(m_handle, cpv(impulse.x, impulse.y), cpv(point.x, point.y));
break;
case CoordSys::Local:
cpBodyApplyImpulseAtLocalPoint(m_handle, cpv(impulse.x, impulse.y), cpv(point.x, point.y));
break;
}
}
void RigidBody2D::AddTorque(const RadianAnglef& torque)
{
cpBodySetTorque(m_handle, cpBodyGetTorque(m_handle) + torque.value);
}
bool RigidBody2D::ClosestPointQuery(const Nz::Vector2f& position, Nz::Vector2f* closestPoint, float* closestDistance) const
{
cpVect pos = cpv(cpFloat(position.x), cpFloat(position.y));
float minDistance = std::numeric_limits<float>::infinity();
Nz::Vector2f closest;
for (cpShape* shape : m_shapes)
{
cpPointQueryInfo result;
cpShapePointQuery(shape, pos, &result);
float resultDistance = float(result.distance);
if (resultDistance < minDistance)
{
closest.Set(float(result.point.x), float(result.point.y));
minDistance = resultDistance;
}
}
if (std::isinf(minDistance))
return false;
if (closestPoint)
*closestPoint = closest;
if (closestDistance)
*closestDistance = minDistance;
return true;
}
void RigidBody2D::EnableSimulation(bool simulation)
{
if (m_isSimulationEnabled != simulation)
{
m_isSimulationEnabled = simulation;
if (simulation)
RegisterToSpace();
else
UnregisterFromSpace();
}
}
void RigidBody2D::ForEachArbiter(std::function<void(Nz::Arbiter2D&)> callback)
{
using CallbackType = decltype(callback);
auto RealCallback = [](cpBody* /*body*/, cpArbiter* arbiter, void* data)
{
CallbackType& cb = *static_cast<CallbackType*>(data);
Arbiter2D nzArbiter(arbiter);
cb(nzArbiter);
};
cpBodyEachArbiter(m_handle, RealCallback, &callback);
}
void RigidBody2D::ForceSleep()
{
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body)
{
if (cpBodyGetType(body->GetHandle()) == CP_BODY_TYPE_DYNAMIC)
cpBodySleep(body->GetHandle());
});
}
Rectf RigidBody2D::GetAABB() const
{
if (m_shapes.empty())
return Rectf::Zero();
auto it = m_shapes.begin();
cpBB bb = cpShapeGetBB(*it++);
for (; it != m_shapes.end(); ++it)
bb = cpBBMerge(bb, cpShapeGetBB(*it));
return Rectf(Rect<cpFloat>(bb.l, bb.b, bb.r - bb.l, bb.t - bb.b));
}
RadianAnglef RigidBody2D::GetAngularVelocity() const
{
return float(cpBodyGetAngularVelocity(m_handle));
}
float Nz::RigidBody2D::GetElasticity(std::size_t shapeIndex) const
{
assert(shapeIndex < m_shapes.size());
return float(cpShapeGetElasticity(m_shapes[shapeIndex]));
}
float Nz::RigidBody2D::GetFriction(std::size_t shapeIndex) const
{
assert(shapeIndex < m_shapes.size());
return float(cpShapeGetFriction(m_shapes[shapeIndex]));
}
const std::shared_ptr<Collider2D>& RigidBody2D::GetGeom() const
{
return m_geom;
}
cpBody* RigidBody2D::GetHandle() const
{
return m_handle;
}
float RigidBody2D::GetMass() const
{
return m_mass;
}
Vector2f RigidBody2D::GetMassCenter(CoordSys coordSys) const
{
cpVect massCenter = cpBodyGetCenterOfGravity(m_handle);
switch (coordSys)
{
case CoordSys::Global:
massCenter = cpBodyLocalToWorld(m_handle, massCenter);
break;
case CoordSys::Local:
break; // Nothing to do
}
return Vector2f(static_cast<float>(massCenter.x), static_cast<float>(massCenter.y));
}
float RigidBody2D::GetMomentOfInertia() const
{
return float(cpBodyGetMoment(m_handle));
}
Vector2f RigidBody2D::GetPosition() const
{
cpVect pos = cpBodyLocalToWorld(m_handle, cpv(-m_positionOffset.x, -m_positionOffset.y));
return Vector2f(static_cast<float>(pos.x), static_cast<float>(pos.y));
}
RadianAnglef RigidBody2D::GetRotation() const
{
return float(cpBodyGetAngle(m_handle));
}
std::size_t RigidBody2D::GetShapeIndex(cpShape* shape) const
{
auto it = std::find(m_shapes.begin(), m_shapes.end(), shape);
if (it == m_shapes.end())
return InvalidShapeIndex;
return std::distance(m_shapes.begin(), it);
}
Vector2f Nz::RigidBody2D::GetSurfaceVelocity(std::size_t shapeIndex) const
{
assert(shapeIndex < m_shapes.size());
cpVect vel = cpShapeGetSurfaceVelocity(m_shapes[shapeIndex]);
return Vector2f(static_cast<float>(vel.x), static_cast<float>(vel.y));
}
void* RigidBody2D::GetUserdata() const
{
return m_userData;
}
Vector2f RigidBody2D::GetVelocity() const
{
cpVect vel = cpBodyGetVelocity(m_handle);
return Vector2f(static_cast<float>(vel.x), static_cast<float>(vel.y));
}
const RigidBody2D::VelocityFunc& RigidBody2D::GetVelocityFunction() const
{
return m_velocityFunc;
}
PhysWorld2D* RigidBody2D::GetWorld() const
{
return m_world;
}
bool RigidBody2D::IsKinematic() const
{
return m_mass <= 0.f;
}
bool RigidBody2D::IsSimulationEnabled() const
{
return m_isSimulationEnabled;
}
bool RigidBody2D::IsSleeping() const
{
return cpBodyIsSleeping(m_handle) != 0;
}
bool RigidBody2D::IsStatic() const
{
return m_isStatic;
}
void RigidBody2D::ResetVelocityFunction()
{
m_handle->velocity_func = cpBodyUpdateVelocity;
}
void RigidBody2D::SetAngularVelocity(const RadianAnglef& angularVelocity)
{
cpBodySetAngularVelocity(m_handle, angularVelocity.value);
}
void RigidBody2D::SetElasticity(float friction)
{
cpFloat frict(friction);
for (cpShape* shape : m_shapes)
cpShapeSetElasticity(shape, frict);
}
void RigidBody2D::SetElasticity(std::size_t shapeIndex, float friction)
{
assert(shapeIndex < m_shapes.size());
cpShapeSetElasticity(m_shapes[shapeIndex], cpFloat(friction));
}
void RigidBody2D::SetFriction(float friction)
{
cpFloat frict(friction);
for (cpShape* shape : m_shapes)
cpShapeSetFriction(shape, frict);
}
void RigidBody2D::SetFriction(std::size_t shapeIndex, float friction)
{
assert(shapeIndex < m_shapes.size());
cpShapeSetFriction(m_shapes[shapeIndex], cpFloat(friction));
}
void RigidBody2D::SetGeom(std::shared_ptr<Collider2D> geom, bool recomputeMoment, bool recomputeMassCenter)
{
// We have no public way of getting rid of an existing geom without removing the whole body
// So let's save some attributes of the body, destroy it and rebuild it
if (m_geom)
{
cpFloat mass = cpBodyGetMass(m_handle);
cpFloat moment = cpBodyGetMoment(m_handle);
cpBody* newHandle = Create(static_cast<float>(mass), static_cast<float>(moment));
CopyBodyData(m_handle, newHandle);
Destroy();
m_handle = newHandle;
}
if (geom)
m_geom = std::move(geom);
else
m_geom = std::make_shared<NullCollider2D>();
m_geom->GenerateShapes(m_handle, &m_shapes);
for (cpShape* shape : m_shapes)
cpShapeSetUserData(shape, this);
if (m_isSimulationEnabled)
RegisterToSpace();
if (recomputeMoment)
{
if (!IsStatic() && !IsKinematic())
cpBodySetMoment(m_handle, m_geom->ComputeMomentOfInertia(m_mass));
}
if (recomputeMassCenter)
SetMassCenter(m_geom->ComputeCenterOfMass());
}
void RigidBody2D::SetMass(float mass, bool recomputeMoment)
{
if (m_mass > 0.f)
{
if (mass > 0.f)
{
m_world->RegisterPostStep(this, [mass, recomputeMoment](Nz::RigidBody2D* body)
{
cpBodySetMass(body->GetHandle(), mass);
if (recomputeMoment)
cpBodySetMoment(body->GetHandle(), body->GetGeom()->ComputeMomentOfInertia(mass));
});
}
else
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body) { cpBodySetType(body->GetHandle(), (body->IsStatic()) ? CP_BODY_TYPE_STATIC : CP_BODY_TYPE_KINEMATIC); } );
}
else if (mass > 0.f)
{
m_world->RegisterPostStep(this, [mass, recomputeMoment](Nz::RigidBody2D* body)
{
if (cpBodyGetType(body->GetHandle()) != CP_BODY_TYPE_DYNAMIC)
{
cpBodySetType(body->GetHandle(), CP_BODY_TYPE_DYNAMIC);
cpBodySetMass(body->GetHandle(), mass);
if (recomputeMoment)
cpBodySetMoment(body->GetHandle(), body->GetGeom()->ComputeMomentOfInertia(mass));
}
});
}
m_mass = mass;
}
void RigidBody2D::SetMassCenter(const Vector2f& center, CoordSys coordSys)
{
cpVect massCenter = cpv(center.x, center.y);
switch (coordSys)
{
case CoordSys::Global:
massCenter = cpBodyWorldToLocal(m_handle, massCenter);
break;
case CoordSys::Local:
break; // Nothing to do
}
cpBodySetCenterOfGravity(m_handle, massCenter);
}
void RigidBody2D::SetMomentOfInertia(float moment)
{
// Even though Chipmunk allows us to change this anytime, we need to do it in a post-step to prevent other post-steps to override this
m_world->RegisterPostStep(this, [moment] (Nz::RigidBody2D* body)
{
cpBodySetMoment(body->GetHandle(), moment);
});
}
void RigidBody2D::SetPosition(const Vector2f& position)
{
// Use cpTransformVect to rotate/scale the position offset
cpBodySetPosition(m_handle, cpvadd(cpv(position.x, position.y), cpTransformVect(m_handle->transform, cpv(m_positionOffset.x, m_positionOffset.y))));
if (m_isStatic)
{
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body)
{
cpSpaceReindexShapesForBody(body->GetWorld()->GetHandle(), body->GetHandle());
});
}
}
void RigidBody2D::SetPositionOffset(const Vector2f& offset)
{
Nz::Vector2f position = GetPosition();
m_positionOffset = offset;
SetPosition(position);
}
void RigidBody2D::SetRotation(const RadianAnglef& rotation)
{
cpBodySetAngle(m_handle, rotation.value);
if (m_isStatic)
{
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body)
{
cpSpaceReindexShapesForBody(body->GetWorld()->GetHandle(), body->GetHandle());
});
}
}
void RigidBody2D::SetSurfaceVelocity(const Vector2f& surfaceVelocity)
{
Vector2<cpFloat> velocity(surfaceVelocity.x, surfaceVelocity.y);
for (cpShape* shape : m_shapes)
cpShapeSetSurfaceVelocity(shape, cpv(velocity.x, velocity.y));
}
void RigidBody2D::SetSurfaceVelocity(std::size_t shapeIndex, const Vector2f& surfaceVelocity)
{
assert(shapeIndex < m_shapes.size());
cpShapeSetSurfaceVelocity(m_shapes[shapeIndex], cpv(cpFloat(surfaceVelocity.x), cpFloat(surfaceVelocity.y)));
}
void RigidBody2D::SetStatic(bool setStaticBody)
{
m_isStatic = setStaticBody;
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body)
{
if (body->IsStatic())
{
cpBodySetType(body->GetHandle(), CP_BODY_TYPE_STATIC);
cpSpaceReindexShapesForBody(body->GetWorld()->GetHandle(), body->GetHandle());
}
else if (cpBodyGetMass(body->GetHandle()) > 0.f)
cpBodySetType(body->GetHandle(), CP_BODY_TYPE_KINEMATIC);
else
cpBodySetType(body->GetHandle(), CP_BODY_TYPE_DYNAMIC);
});
}
void RigidBody2D::SetUserdata(void* ud)
{
m_userData = ud;
}
void RigidBody2D::SetVelocity(const Vector2f& velocity)
{
cpBodySetVelocity(m_handle, cpv(velocity.x, velocity.y));
}
void RigidBody2D::SetVelocityFunction(VelocityFunc velocityFunc)
{
m_velocityFunc = std::move(velocityFunc);
if (m_velocityFunc)
{
m_handle->velocity_func = [](cpBody* body, cpVect gravity, cpFloat damping, cpFloat dt)
{
RigidBody2D* rigidBody = static_cast<RigidBody2D*>(cpBodyGetUserData(body));
const auto& callback = rigidBody->GetVelocityFunction();
assert(callback);
callback(*rigidBody, Nz::Vector2f(float(gravity.x), float(gravity.y)), float(damping), float(dt));
};
}
else
m_handle->velocity_func = cpBodyUpdateVelocity;
}
void RigidBody2D::UpdateVelocity(const Nz::Vector2f & gravity, float damping, float deltaTime)
{
cpBodyUpdateVelocity(m_handle, cpv(gravity.x, gravity.y), damping, deltaTime);
}
void RigidBody2D::Wakeup()
{
m_world->RegisterPostStep(this, [](Nz::RigidBody2D* body)
{
if (cpBodyGetType(body->GetHandle()) != CP_BODY_TYPE_STATIC)
cpBodyActivate(body->GetHandle());
else
cpBodyActivateStatic(body->GetHandle(), nullptr);
});
}
RigidBody2D& RigidBody2D::operator=(const RigidBody2D& object)
{
RigidBody2D physObj(object);
return operator=(std::move(physObj));
}
RigidBody2D& RigidBody2D::operator=(RigidBody2D&& object)
{
Destroy();
OnRigidBody2DMove = std::move(object.OnRigidBody2DMove);
OnRigidBody2DRelease = std::move(object.OnRigidBody2DRelease);
m_handle = object.m_handle;
m_isRegistered = object.m_isRegistered;
m_isSimulationEnabled = object.m_isSimulationEnabled;
m_isStatic = object.m_isStatic;
m_geom = std::move(object.m_geom);
m_gravityFactor = object.m_gravityFactor;
m_mass = object.m_mass;
m_positionOffset = object.m_positionOffset;
m_shapes = std::move(object.m_shapes);
m_userData = object.m_userData;
m_velocityFunc = std::move(object.m_velocityFunc);
m_world = object.m_world;
cpBodySetUserData(m_handle, this);
for (cpShape* shape : m_shapes)
cpShapeSetUserData(shape, this);
object.m_handle = nullptr;
OnRigidBody2DMove(&object, this);
return *this;
}
void RigidBody2D::Destroy()
{
UnregisterFromSpace();
for (cpShape* shape : m_shapes)
cpShapeFree(shape);
if (m_handle)
{
cpBodyFree(m_handle);
m_handle = nullptr;
}
m_shapes.clear();
}
cpBody* RigidBody2D::Create(float mass, float moment)
{
cpBody* handle;
if (IsKinematic())
{
if (IsStatic())
handle = cpBodyNewStatic();
else
handle = cpBodyNewKinematic();
}
else
handle = cpBodyNew(mass, moment);
cpBodySetUserData(handle, this);
return handle;
}
void RigidBody2D::RegisterToSpace()
{
if (!m_isRegistered)
{
cpSpace* space = m_world->GetHandle();
for (cpShape* shape : m_shapes)
cpSpaceAddShape(space, shape);
if (m_handle)
cpSpaceAddBody(space, m_handle);
m_isRegistered = true;
}
}
void RigidBody2D::UnregisterFromSpace()
{
if (m_isRegistered)
{
cpSpace* space = m_world->GetHandle();
for (cpShape* shape : m_shapes)
cpSpaceRemoveShape(space, shape);
if (m_handle)
cpSpaceRemoveBody(space, m_handle);
m_isRegistered = false;
}
}
void RigidBody2D::CopyBodyData(cpBody* from, cpBody* to)
{
cpBodySetCenterOfGravity(to, cpBodyGetCenterOfGravity(from));
cpBodySetAngle(to, cpBodyGetAngle(from));
cpBodySetAngularVelocity(to, cpBodyGetAngularVelocity(from));
cpBodySetForce(to, cpBodyGetForce(from));
cpBodySetPosition(to, cpBodyGetPosition(from));
cpBodySetTorque(to, cpBodyGetTorque(from));
cpBodySetVelocity(to, cpBodyGetVelocity(from));
cpBodySetType(to, cpBodyGetType(from));
to->velocity_func = from->velocity_func;
}
void RigidBody2D::CopyShapeData(cpShape* from, cpShape* to)
{
cpShapeSetElasticity(to, cpShapeGetElasticity(from));
cpShapeSetFriction(to, cpShapeGetFriction(from));
cpShapeSetSurfaceVelocity(to, cpShapeGetSurfaceVelocity(from));
}
}