NazaraEngine/include/Nazara/Math/Quaternion.inl

449 lines
9.1 KiB
C++

// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Math/Config.hpp>
#include <Nazara/Math/EulerAngles.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <cstring>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
{
Set(W, X, Y, Z);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(const T quat[4])
{
Set(quat);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
{
Set(angle, axis);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
{
Set(angles);
}
/*
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
{
Set(mat);
}
*/
template<typename T>
template<typename U>
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
{
Set(quat);
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::ComputeW()
{
T t = F(1.0) - SquaredMagnitude();
if (t < F(0.0))
w = F(0.0);
else
w = -std::sqrt(t);
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Conjugate()
{
x = -x;
y = -y;
z = -z;
return *this;
}
template<typename T>
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
{
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
{
NzQuaternion<T> quat(*this);
quat.Conjugate();
return quat;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetInverse() const
{
NzQuaternion<T> quat(*this);
quat.Inverse();
return quat;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetNormal(T* length) const
{
NzQuaternion<T> quat(*this);
quat.Normalize(length);
return quat;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Inverse()
{
T norm = SquaredMagnitude();
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= -invNorm;
y *= -invNorm;
z *= -invNorm;
}
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::MakeIdentity()
{
return Set(F(1.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::MakeZero()
{
return Set(F(0.0), F(0.0), F(0.0), F(0.0));
}
template<typename T>
T NzQuaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Normalize(T* length)
{
T norm = std::sqrt(SquaredMagnitude());
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
if (length)
*length = norm;
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Set(const T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Set(T angle, const NzVector3<T>& axis)
{
angle *= F(0.5);
#if !NAZARA_MATH_ANGLE_RADIAN
angle = NzDegreeToRadian(angle);
#endif
NzVector3<T> normalizedAxis = axis.GetNormal();
T sinAngle = std::sin(angle);
w = std::cos(angle);
x = normalizedAxis.x * sinAngle;
y = normalizedAxis.y * sinAngle;
z = normalizedAxis.z * sinAngle;
return Normalize();
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
{
return Set(angles.ToQuaternion());
}
template<typename T>
template<typename U>
NzQuaternion<T>& NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
{
w = static_cast<T>(quat.w);
x = static_cast<T>(quat.x);
y = static_cast<T>(quat.y);
z = static_cast<T>(quat.z);
return *this;
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::Set(const NzQuaternion& quat)
{
std::memcpy(this, &quat, sizeof(NzQuaternion));
return *this;
}
template<typename T>
T NzQuaternion<T>::SquaredMagnitude() const
{
return w*w + x*x + y*y + z*z;
}
template<typename T>
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
{
T test = x*y + z*w;
if (test > F(0.499))
// singularity at north pole
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
if (test < F(-0.499))
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*x* - F(2.0)*z*z)),
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*y*y - F(2.0)*z*z)),
NzRadians(std::asin(F(2.0)*test)));
}
template<typename T>
NzString NzQuaternion<T>::ToString() const
{
NzStringStream ss;
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
{
return Set(quat);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
{
NzQuaternion result;
result.w = w + quat.w;
result.x = x + quat.x;
result.y = y + quat.y;
result.z = z + quat.z;
return result;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
{
NzQuaternion result;
result.w = w*quat.w - x*quat.x - y*quat.y - z*quat.z;
result.x = w*quat.x + x*quat.w + y*quat.z - z*quat.y;
result.y = w*quat.y + y*quat.w + z*quat.x - x*quat.z;
result.z = w*quat.z + z*quat.w + x*quat.y - y*quat.x;
return result;
}
template<typename T>
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
{
NzVector3f quatVec(x, y, z);
NzVector3f uv = quatVec.CrossProduct(vec);
NzVector3f uuv = quatVec.CrossProduct(uv);
uv *= F(2.0) * w;
uuv *= F(2.0);
return vec + uv + uuv;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
{
return NzQuaternion(w * scale,
x * scale,
y * scale,
z * scale);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
{
return GetConjugate(quat) * (*this);
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
{
return operator=(operator+(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
{
return operator=(operator*(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
{
return operator=(operator/(quat));
}
template<typename T>
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
{
return NzNumberEquals(w, quat.w) &&
NzNumberEquals(x, quat.x) &&
NzNumberEquals(y, quat.y) &&
NzNumberEquals(z, quat.z);
}
template<typename T>
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
{
return !operator==(quat);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Identity()
{
NzQuaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Lerp(const NzQuaternion& from, const NzQuaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NzString::Number(interpolation) + ')');
return Zero();
}
#endif
NzQuaternion interpolated;
interpolated.w = NzLerp(from.w, to.w, interpolation);
interpolated.x = NzLerp(from.x, to.x, interpolation);
interpolated.y = NzLerp(from.y, to.y, interpolation);
interpolated.z = NzLerp(from.z, to.z, interpolation);
return interpolated;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& from, const NzQuaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NzString::Number(interpolation) + ')');
return Zero();
}
#endif
NzQuaternion q;
T cosOmega = from.DotProduct(to);
if (cosOmega < F(0.0))
{
// On inverse tout
q.Set(-to.w, -to.x, -to.y, -to.z);
cosOmega = -cosOmega;
}
else
q.Set(to);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Interpolation linéaire pour éviter une division par zéro
k0 = F(1.0) - interpolation;
k1 = interpolation;
}
else
{
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
T omega = std::atan2(sinOmega, cosOmega);
// Pour éviter deux divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interpolation) * omega) * sinOmega;
k1 = std::sin(interpolation*omega) * sinOmega;
}
NzQuaternion result(k0 * from.w, k0 * from.x, k0 * from.y, k0 * from.z);
return result += q*k1;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Zero()
{
NzQuaternion quaternion;
quaternion.MakeZero();
return quaternion;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
{
return out << quat.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>