NazaraEngine/src/Nazara/Graphics/DeferredRenderQueue.cpp

310 lines
9.9 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Graphics/DeferredRenderQueue.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/ForwardRenderQueue.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Debug.hpp>
///TODO: Rendre les billboards via Deferred Shading si possible
namespace
{
enum ResourceType
{
ResourceType_IndexBuffer,
ResourceType_Material,
ResourceType_VertexBuffer
};
}
NzDeferredRenderQueue::NzDeferredRenderQueue(NzForwardRenderQueue* forwardQueue) :
m_forwardQueue(forwardQueue)
{
}
void NzDeferredRenderQueue::AddBillboard(const NzMaterial* material, const NzVector3f& position, const NzVector2f& size, const NzVector2f& sinCos, const NzColor& color)
{
m_forwardQueue->AddBillboard(material, position, size, sinCos, color);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const NzColor> colorPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, sinCosPtr, colorPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const float> alphaPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, sinCosPtr, alphaPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const NzColor> colorPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, anglePtr, colorPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const NzVector2f> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const float> alphaPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, anglePtr, alphaPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const NzColor> colorPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, sinCosPtr, colorPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const NzVector2f> sinCosPtr, NzSparsePtr<const float> alphaPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, sinCosPtr, alphaPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const NzColor> colorPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, anglePtr, colorPtr);
}
void NzDeferredRenderQueue::AddBillboards(const NzMaterial* material, unsigned int count, NzSparsePtr<const NzVector3f> positionPtr, NzSparsePtr<const float> sizePtr, NzSparsePtr<const float> anglePtr, NzSparsePtr<const float> alphaPtr)
{
m_forwardQueue->AddBillboards(material, count, positionPtr, sizePtr, anglePtr, alphaPtr);
}
void NzDeferredRenderQueue::AddDrawable(const NzDrawable* drawable)
{
m_forwardQueue->AddDrawable(drawable);
}
void NzDeferredRenderQueue::AddLight(const NzLight* light)
{
#if NAZARA_GRAPHICS_SAFE
if (!light)
{
NazaraError("Invalid light");
return;
}
#endif
// On trie la lumière (elles sont traitées différement selon leur type)
switch (light->GetLightType())
{
case nzLightType_Directional:
directionalLights.push_back(light);
break;
case nzLightType_Point:
pointLights.push_back(light);
break;
case nzLightType_Spot:
spotLights.push_back(light);
break;
}
// On envoie également la lumière au forward-shading
///TODO: Possibilité pour une lumière de se réserver au Deferred Shading
m_forwardQueue->AddLight(light);
}
void NzDeferredRenderQueue::AddMesh(const NzMaterial* material, const NzMeshData& meshData, const NzBoxf& meshAABB, const NzMatrix4f& transformMatrix)
{
if (material->IsEnabled(nzRendererParameter_Blend))
// Un matériau transparent ? J'aime pas, va voir dans la forward queue si j'y suis
m_forwardQueue->AddMesh(material, meshData, meshAABB, transformMatrix);
else
{
auto it = opaqueModels.find(material);
if (it == opaqueModels.end())
{
BatchedModelEntry entry(this, ResourceType_Material);
entry.materialListener = material;
it = opaqueModels.insert(std::make_pair(material, std::move(entry))).first;
}
BatchedModelEntry& entry = it->second;
entry.enabled = true;
auto& meshMap = entry.meshMap;
auto it2 = meshMap.find(meshData);
if (it2 == meshMap.end())
{
MeshInstanceEntry instanceEntry(this, ResourceType_IndexBuffer, ResourceType_VertexBuffer);
instanceEntry.indexBufferListener = meshData.indexBuffer;
instanceEntry.vertexBufferListener = meshData.vertexBuffer;
it2 = meshMap.insert(std::make_pair(meshData, std::move(instanceEntry))).first;
}
// On ajoute la matrice à la liste des instances de cet objet
std::vector<NzMatrix4f>& instances = it2->second.instances;
instances.push_back(transformMatrix);
// Avons-nous suffisamment d'instances pour que le coût d'utilisation de l'instancing soit payé ?
if (instances.size() >= NAZARA_GRAPHICS_INSTANCING_MIN_INSTANCES_COUNT)
entry.instancingEnabled = true; // Apparemment oui, activons l'instancing avec ce matériau
}
}
void NzDeferredRenderQueue::AddSprites(const NzMaterial* material, const NzVertexStruct_XYZ_Color_UV* vertices, unsigned int spriteCount, const NzTexture* overlay)
{
m_forwardQueue->AddSprites(material, vertices, spriteCount, overlay);
}
void NzDeferredRenderQueue::Clear(bool fully)
{
directionalLights.clear();
pointLights.clear();
spotLights.clear();
if (fully)
opaqueModels.clear();
m_forwardQueue->Clear(fully);
}
bool NzDeferredRenderQueue::OnResourceDestroy(const NzResource* resource, int index)
{
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
const NzMaterial* material = static_cast<const NzMaterial*>(resource);
opaqueModels.erase(material);
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
return false; // Nous ne voulons plus recevoir d'évènement de cette ressource
}
void NzDeferredRenderQueue::OnResourceReleased(const NzResource* resource, int index)
{
// La ressource vient d'être libérée, nous ne pouvons donc plus utiliser la méthode traditionnelle de recherche
// des pointeurs stockés (À cause de la fonction de triage utilisant des spécificités des ressources)
switch (index)
{
case ResourceType_IndexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.indexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
case ResourceType_Material:
{
for (auto it = opaqueModels.begin(); it != opaqueModels.end(); ++it)
{
if (it->first == resource)
{
opaqueModels.erase(it);
break;
}
}
break;
}
case ResourceType_VertexBuffer:
{
for (auto& modelPair : opaqueModels)
{
MeshInstanceContainer& meshes = modelPair.second.meshMap;
for (auto it = meshes.begin(); it != meshes.end();)
{
const NzMeshData& renderData = it->first;
if (renderData.vertexBuffer == resource)
it = meshes.erase(it);
else
++it;
}
}
break;
}
}
}
bool NzDeferredRenderQueue::BatchedModelMaterialComparator::operator()(const NzMaterial* mat1, const NzMaterial* mat2)
{
const NzUberShader* uberShader1 = mat1->GetShader();
const NzUberShader* uberShader2 = mat2->GetShader();
if (uberShader1 != uberShader2)
return uberShader1 < uberShader2;
const NzShader* shader1 = mat1->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
const NzShader* shader2 = mat2->GetShaderInstance(nzShaderFlags_Deferred)->GetShader();
if (shader1 != shader2)
return shader1 < shader2;
const NzTexture* diffuseMap1 = mat1->GetDiffuseMap();
const NzTexture* diffuseMap2 = mat2->GetDiffuseMap();
if (diffuseMap1 != diffuseMap2)
return diffuseMap1 < diffuseMap2;
return mat1 < mat2;
}
bool NzDeferredRenderQueue::MeshDataComparator::operator()(const NzMeshData& data1, const NzMeshData& data2)
{
const NzBuffer* buffer1;
const NzBuffer* buffer2;
buffer1 = (data1.indexBuffer) ? data1.indexBuffer->GetBuffer() : nullptr;
buffer2 = (data2.indexBuffer) ? data2.indexBuffer->GetBuffer() : nullptr;
if (buffer1 != buffer2)
return buffer1 < buffer2;
buffer1 = data1.vertexBuffer->GetBuffer();
buffer2 = data2.vertexBuffer->GetBuffer();
if (buffer1 != buffer2)
return buffer1 < buffer2;
return data1.primitiveMode < data2.primitiveMode;
}