848 lines
21 KiB
C++
848 lines
21 KiB
C++
// Copyright (C) 2023 Rémi Bèges - Jérôme "Lynix" Leclercq (lynix680@gmail.com)
|
|
// This file is part of the "Nazara Engine - Math module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/Algorithm.hpp>
|
|
#include <Nazara/Math/Config.hpp>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
namespace Nz
|
|
{
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Quaternion
|
|
* \brief Math class that represents an element of the quaternions
|
|
*
|
|
* \remark The quaternion is meant to be 'unit' to represent rotations in a three dimensional space
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from its components
|
|
*
|
|
* \param W W component
|
|
* \param X X component
|
|
* \param Y Y component
|
|
* \param Z Z component
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>::Quaternion(T W, T X, T Y, T Z) :
|
|
w(W),
|
|
x(X),
|
|
y(Y),
|
|
z(Z)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from an angle
|
|
*
|
|
* \param angle Angle representing a 2D rotation
|
|
*/
|
|
template<typename T>
|
|
template<AngleUnit Unit>
|
|
Quaternion<T>::Quaternion(const Angle<Unit, T>& angle) :
|
|
Quaternion(angle.ToQuaternion())
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from a EulerAngles
|
|
*
|
|
* \param angles Easier representation of rotation of space
|
|
*
|
|
* \see EulerAngles
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T>::Quaternion(const EulerAngles<T>& angles) :
|
|
Quaternion(angles.ToQuaternion())
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from an angle and a direction
|
|
*
|
|
* \param angle Angle to rotate along the axis
|
|
* \param axis Vector3 which represents a direction, no need to be normalized
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>::Quaternion(RadianAngle<T> angle, const Vector3<T>& axis)
|
|
{
|
|
angle /= T(2.0);
|
|
|
|
Vector3<T> normalizedAxis = axis.GetNormal();
|
|
|
|
auto sincos = angle.GetSinCos();
|
|
|
|
w = sincos.second;
|
|
x = normalizedAxis.x * sincos.first;
|
|
y = normalizedAxis.y * sincos.first;
|
|
z = normalizedAxis.z * sincos.first;
|
|
|
|
Normalize();
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from an array of four elements
|
|
*
|
|
* \param quat[4] quat[0] is W component, quat[1] is X component, quat[2] is Y component and quat[3] is Z component
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>::Quaternion(const T quat[4]) :
|
|
w(quat[0]),
|
|
x(quat[1]),
|
|
y(quat[2]),
|
|
z(quat[3])
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Quaternion object from another type of Quaternion
|
|
*
|
|
* \param quat Quaternion of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
constexpr Quaternion<T>::Quaternion(const Quaternion<U>& quat) :
|
|
w(static_cast<T>(quat.w)),
|
|
x(static_cast<T>(quat.x)),
|
|
y(static_cast<T>(quat.y)),
|
|
z(static_cast<T>(quat.z))
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
RadianAngle<T> Quaternion<T>::AngleBetween(const Quaternion& quat) const
|
|
{
|
|
T alpha = Vector3<T>::DotProduct(Vector3<T>(x, y, z), Vector3<T>(quat.x, quat.y, quat.z));
|
|
return std::acos(Nz::Clamp(alpha, T(-1.0), T(1.0)));
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::ApproxEqual(const Quaternion& quat, T maxDifference) const
|
|
{
|
|
return NumberEquals(w, quat.w, maxDifference) &&
|
|
NumberEquals(x, quat.x, maxDifference) &&
|
|
NumberEquals(y, quat.y, maxDifference) &&
|
|
NumberEquals(z, quat.z, maxDifference);
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the w component of the quaternion to make it unit
|
|
* \return A reference to this quaternion
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T>& Quaternion<T>::ComputeW()
|
|
{
|
|
T t = T(1.0) - SquaredMagnitude();
|
|
|
|
if (t < T(0.0))
|
|
w = T(0.0);
|
|
else
|
|
w = -std::sqrt(t);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the rotational conjugate of this quaternion
|
|
* \return A reference to this quaternion
|
|
*
|
|
* The conjugate of a quaternion represents the same rotation in the opposite direction about the rotational axis
|
|
*
|
|
* \see GetConjugate
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>& Quaternion<T>::Conjugate()
|
|
{
|
|
x = -x;
|
|
y = -y;
|
|
z = -z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Calculates the dot (scalar) product with two quaternions
|
|
* \return The value of the dot product
|
|
*
|
|
* \param quat The other quaternion to calculate the dot product with
|
|
*/
|
|
template<typename T>
|
|
constexpr T Quaternion<T>::DotProduct(const Quaternion& quat) const
|
|
{
|
|
return w * quat.w + x * quat.x + y * quat.y + z * quat.z;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the rotational conjugate of this quaternion
|
|
* \return A new quaternion which is the conjugate of this quaternion
|
|
*
|
|
* The conjugate of a quaternion represents the same rotation in the opposite direction about the rotational axis
|
|
*
|
|
* \see Conjugate
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::GetConjugate() const
|
|
{
|
|
Quaternion<T> quat(*this);
|
|
quat.Conjugate();
|
|
|
|
return quat;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the inverse of this quaternion
|
|
* \return A new quaternion which is the inverse of this quaternion
|
|
*
|
|
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0)
|
|
*
|
|
* \see Inverse
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::GetInverse() const
|
|
{
|
|
Quaternion<T> quat(*this);
|
|
quat.Inverse();
|
|
|
|
return quat;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the normalization of this quaternion
|
|
* \return A new quaternion which is the normalization of this quaternion
|
|
*
|
|
* \param length Optional argument to obtain the length's ratio of the quaternion and the unit-length
|
|
*
|
|
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0) and length is 0
|
|
*
|
|
* \see Normalize
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::GetNormal(T* length) const
|
|
{
|
|
Quaternion<T> quat(*this);
|
|
quat.Normalize(length);
|
|
|
|
return quat;
|
|
}
|
|
|
|
/*!
|
|
* \brief Inverts this quaternion
|
|
* \return A reference to this quaternion which is now inverted
|
|
*
|
|
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0)
|
|
*
|
|
* \see GetInverse
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T>& Quaternion<T>::Inverse()
|
|
{
|
|
T norm = SquaredMagnitude();
|
|
if (norm > T(0.0))
|
|
{
|
|
T invNorm = T(1.0) / std::sqrt(norm);
|
|
|
|
w *= invNorm;
|
|
x *= -invNorm;
|
|
y *= -invNorm;
|
|
z *= -invNorm;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Calculates the magnitude (length) of the quaternion
|
|
* \return The magnitude
|
|
*
|
|
* \see SquaredMagnitude
|
|
*/
|
|
template<typename T>
|
|
T Quaternion<T>::Magnitude() const
|
|
{
|
|
return std::sqrt(SquaredMagnitude());
|
|
}
|
|
|
|
/*!
|
|
* \brief Normalizes the current quaternion
|
|
* \return A reference to this quaternion which is now normalized
|
|
*
|
|
* \param length Optional argument to obtain the length's ratio of the quaternion and the unit-length
|
|
*
|
|
* \remark If the quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0) and length is 0
|
|
*
|
|
* \see GetNormal
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T>& Quaternion<T>::Normalize(T* length)
|
|
{
|
|
T norm = std::sqrt(SquaredMagnitude());
|
|
if (norm > T(0.0))
|
|
{
|
|
T invNorm = T(1.0) / norm;
|
|
w *= invNorm;
|
|
x *= invNorm;
|
|
y *= invNorm;
|
|
z *= invNorm;
|
|
}
|
|
|
|
if (length)
|
|
*length = norm;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Calculates the squared magnitude (length) of the quaternion
|
|
* \return The squared magnitude
|
|
*
|
|
* \see Magnitude
|
|
*/
|
|
template<typename T>
|
|
constexpr T Quaternion<T>::SquaredMagnitude() const
|
|
{
|
|
return w * w + x * x + y * y + z * z;
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the "roll angle" of this quaternion
|
|
* \return Roll rotation
|
|
*
|
|
* \remark This function only has sense when quaternion only represents a "roll rotation"
|
|
*/
|
|
template<typename T>
|
|
RadianAngle<T> Quaternion<T>::To2DAngle() const
|
|
{
|
|
T siny_cosp = T(2.0) * (w * z + x * y);
|
|
T cosy_cosp = T(1.0) - T(2.0) * (y * y + z * z);
|
|
|
|
return std::atan2(siny_cosp, cosy_cosp);
|
|
}
|
|
|
|
/*!
|
|
* \brief Converts this quaternion to Euler angles representation
|
|
* \return EulerAngles which is the representation of this rotation
|
|
*
|
|
* \remark Rotation are "left-handed"
|
|
*/
|
|
template<typename T>
|
|
EulerAngles<T> Quaternion<T>::ToEulerAngles() const
|
|
{
|
|
T test = x * y + z * w;
|
|
if (test > T(0.499))
|
|
// singularity at north pole
|
|
return EulerAngles<T>(DegreeAngle<T>(T(0.0)), RadianAngle<T>(T(2.0) * std::atan2(x, w)), DegreeAngle<T>(T(90.0)));
|
|
|
|
if (test < T(-0.499))
|
|
// singularity at south pole
|
|
return EulerAngles<T>(DegreeAngle<T>(T(0.0)), RadianAngle<T>(T(-2.0) * std::atan2(x, w)), DegreeAngle<T>(T(-90.0)));
|
|
|
|
return EulerAngles<T>(RadianAngle<T>(std::atan2(T(2.0) * x * w - T(2.0) * y * z, T(1.0) - T(2.0) * x * x - T(2.0) * z * z)),
|
|
RadianAngle<T>(std::atan2(T(2.0) * y * w - T(2.0) * x * z, T(1.0) - T(2.0) * y * y - T(2.0) * z * z)),
|
|
RadianAngle<T>(std::asin(T(2.0) * test)));
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives a string representation
|
|
* \return A string representation of the object: "Quaternion(w | x, y, z)"
|
|
*/
|
|
template<typename T>
|
|
std::string Quaternion<T>::ToString() const
|
|
{
|
|
std::ostringstream ss;
|
|
ss << *this;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Adds the components of the quaternion with other quaternion
|
|
* \return A quaternion where components are the sum of this quaternion and the other one
|
|
*
|
|
* \param quat The other quaternion to add components with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::operator+(const Quaternion& quat) const
|
|
{
|
|
Quaternion result;
|
|
result.w = w + quat.w;
|
|
result.x = x + quat.x;
|
|
result.y = y + quat.y;
|
|
result.z = z + quat.z;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies of the quaternion with other quaternion
|
|
* \return A quaternion which is the product of those two according to operator* in quaternions
|
|
*
|
|
* \param quat The other quaternion to multiply with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::operator*(const Quaternion& quat) const
|
|
{
|
|
Quaternion result;
|
|
result.w = w * quat.w - x * quat.x - y * quat.y - z * quat.z;
|
|
result.x = w * quat.x + x * quat.w + y * quat.z - z * quat.y;
|
|
result.y = w * quat.y + y * quat.w + z * quat.x - x * quat.z;
|
|
result.z = w * quat.z + z * quat.w + x * quat.y - y * quat.x;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*!
|
|
* \brief Apply the quaternion to the Vector3
|
|
* \return A Vector3f which is the vector rotated by this quaternion
|
|
*
|
|
* \param vec The vector to multiply with
|
|
*/
|
|
template<typename T>
|
|
constexpr Vector3<T> Quaternion<T>::operator*(const Vector3<T>& vec) const
|
|
{
|
|
Vector3<T> quatVec(x, y, z);
|
|
Vector3<T> uv = quatVec.CrossProduct(vec);
|
|
Vector3<T> uuv = quatVec.CrossProduct(uv);
|
|
uv *= T(2.0) * w;
|
|
uuv *= T(2.0);
|
|
|
|
return vec + uv + uuv;
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the components of the quaternion with a scalar
|
|
* \return A quaternion where components are the product of this quaternion and the scalar
|
|
*
|
|
* \param scale The scalar to multiply components with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::operator*(T scale) const
|
|
{
|
|
return Quaternion(w * scale,
|
|
x * scale,
|
|
y * scale,
|
|
z * scale);
|
|
}
|
|
|
|
/*!
|
|
* \brief Divides the quaternion with other quaternion
|
|
* \return A quaternion which is the quotient of those two according to operator* in quaternions
|
|
*
|
|
* \param quat The other quaternion to divide with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::operator/(const Quaternion& quat) const
|
|
{
|
|
return quat.GetConjugate() * (*this);
|
|
}
|
|
|
|
/*!
|
|
* \brief Adds the components of the quaternion with other quaternion
|
|
* \return A reference to this quaternion where components are the sum of this quaternion and the other one
|
|
*
|
|
* \param quat The other quaternion to add components with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>& Quaternion<T>::operator+=(const Quaternion& quat)
|
|
{
|
|
return operator=(operator+(quat));
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies of the quaternion with other quaternion
|
|
* \return A reference to this quaternion which is the product of those two according to operator* in quaternions
|
|
*
|
|
* \param quat The other quaternion to multiply with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>& Quaternion<T>::operator*=(const Quaternion& quat)
|
|
{
|
|
return operator=(operator*(quat));
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the components of the quaternion with a scalar
|
|
* \return A reference to this quaternion where components are the product of this quaternion and the scalar
|
|
*
|
|
* \param scale The scalar to multiply components with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>& Quaternion<T>::operator*=(T scale)
|
|
{
|
|
return operator=(operator*(scale));
|
|
}
|
|
|
|
/*!
|
|
* \brief Divides the quaternion with other quaternion
|
|
* \return A reference to this quaternion which is the quotient of those two according to operator* in quaternions
|
|
*
|
|
* \param quat The other quaternion to divide with
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T>& Quaternion<T>::operator/=(const Quaternion& quat)
|
|
{
|
|
return operator=(operator/(quat));
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the quaternion to other one
|
|
* \return true if the quaternions are the same
|
|
*
|
|
* \param quat Other quaternion to compare with
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator==(const Quaternion& quat) const
|
|
{
|
|
return w == quat.w && x == quat.x && y == quat.y && z == quat.z;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the quaternion to other one
|
|
* \return false if the quaternions are the same
|
|
*
|
|
* \param quat Other quaternion to compare with
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator!=(const Quaternion& quat) const
|
|
{
|
|
return !operator==(quat);
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator<(const Quaternion& quat) const
|
|
{
|
|
if (w != quat.w)
|
|
return w < quat.w;
|
|
|
|
if (x != quat.x)
|
|
return x < quat.x;
|
|
|
|
if (y != quat.y)
|
|
return y < quat.y;
|
|
|
|
if (z != quat.z)
|
|
return z < quat.z;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator<=(const Quaternion& quat) const
|
|
{
|
|
if (w != quat.w)
|
|
return w < quat.w;
|
|
|
|
if (x != quat.x)
|
|
return x < quat.x;
|
|
|
|
if (y != quat.y)
|
|
return y < quat.y;
|
|
|
|
if (z != quat.z)
|
|
return z <= quat.z;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator>(const Quaternion& quat) const
|
|
{
|
|
if (w != quat.w)
|
|
return w > quat.w;
|
|
|
|
if (x != quat.x)
|
|
return x > quat.x;
|
|
|
|
if (y != quat.y)
|
|
return y > quat.y;
|
|
|
|
if (z != quat.z)
|
|
return z > quat.z;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::operator>=(const Quaternion& quat) const
|
|
{
|
|
if (w != quat.w)
|
|
return w > quat.w;
|
|
|
|
if (x != quat.x)
|
|
return x > quat.x;
|
|
|
|
if (y != quat.y)
|
|
return y > quat.y;
|
|
|
|
if (z != quat.z)
|
|
return z >= quat.z;
|
|
}
|
|
|
|
template<typename T>
|
|
RadianAngle<T> Quaternion<T>::AngleBetween(const Quaternion& lhs, const Quaternion& rhs)
|
|
{
|
|
return lhs.AngleBetween(rhs);
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Quaternion<T>::ApproxEqual(const Quaternion& lhs, const Quaternion& rhs, T maxDifference)
|
|
{
|
|
return lhs.ApproxEqual(rhs, maxDifference);
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the quaternion (1, 0, 0, 0)
|
|
* \return A quaternion with components (1, 0, 0, 0)
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::Identity()
|
|
{
|
|
return Quaternion(1, 0, 0, 0);
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates the quaternion to other one with a factor of interpolation
|
|
* \return A new quaternion which is the interpolation of two quaternions
|
|
*
|
|
* \param from Initial quaternion
|
|
* \param to Target quaternion
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
|
|
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Zero() is returned
|
|
*
|
|
* \see Lerp, Slerp
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::Lerp(const Quaternion& from, const Quaternion& to, T interpolation)
|
|
{
|
|
Quaternion interpolated;
|
|
interpolated.w = Nz::Lerp(from.w, to.w, interpolation);
|
|
interpolated.x = Nz::Lerp(from.x, to.x, interpolation);
|
|
interpolated.y = Nz::Lerp(from.y, to.y, interpolation);
|
|
interpolated.z = Nz::Lerp(from.z, to.z, interpolation);
|
|
|
|
return interpolated;
|
|
}
|
|
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::LookAt(const Vector3<T>& forward, const Vector3<T>& up)
|
|
{
|
|
// From https://gamedev.stackexchange.com/questions/53129/quaternion-look-at-with-up-vector
|
|
|
|
Vector3<T> forward_w = Vector3<T>::Forward();
|
|
Vector3<T> axis = Vector3<T>::CrossProduct(forward, forward_w);
|
|
RadianAngle<T> angle = std::acos(Vector3<T>::DotProduct(forward, forward_w));
|
|
|
|
Vector3<T> third = Vector3<T>::CrossProduct(axis, forward_w);
|
|
if (Vector3<T>::DotProduct(third, forward) < 0)
|
|
angle = -angle;
|
|
|
|
Quaternion<T> q1 = Quaternion(angle, axis);
|
|
|
|
Vector3<T> up_l = q1 * up;
|
|
Vector3<T> right = Vector3<T>::Normalize(Vector3<T>::CrossProduct(forward, up));
|
|
Vector3<T> up_w = Vector3<T>::Normalize(Vector3<T>::CrossProduct(right, forward));
|
|
|
|
Vector3<T> axis2 = Vector3<T>::CrossProduct(up_l, up_w);
|
|
RadianAngle<T> angle2 = std::acos(Vector3<T>::DotProduct(forward, forward_w));
|
|
|
|
Quaternion<T> q2 = Quaternion(angle2, axis2);
|
|
|
|
return q2 * q1;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives the normalized quaternion
|
|
* \return A normalized quaternion from the quat
|
|
*
|
|
* \param quat Quaternion to normalize
|
|
* \param length Optional argument to obtain the length's ratio of the vector and the unit-length
|
|
*
|
|
* \see GetNormal
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::Normalize(const Quaternion& quat, T* length)
|
|
{
|
|
return quat.GetNormal(length);
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the rotation required to rotate direction Vector3 from to direction Vector3 to
|
|
* \return A quaternion which is the rotation needed between those two Vector3
|
|
*
|
|
* \param from Initial vector
|
|
* \param to Target vector
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::RotationBetween(const Vector3<T>& from, const Vector3<T>& to)
|
|
{
|
|
T dot = from.DotProduct(to);
|
|
if (dot < T(-0.999999))
|
|
{
|
|
Vector3<T> crossProduct;
|
|
if (from.DotProduct(Vector3<T>::UnitX()) < T(0.999999))
|
|
crossProduct = Vector3<T>::UnitX().CrossProduct(from);
|
|
else
|
|
crossProduct = Vector3<T>::UnitY().CrossProduct(from);
|
|
|
|
crossProduct.Normalize();
|
|
return Quaternion(Pi<T>, crossProduct);
|
|
}
|
|
else if (dot > T(0.999999))
|
|
return Quaternion(1, 0, 0, 0);
|
|
else
|
|
{
|
|
T norm = std::sqrt(from.GetSquaredLength() * to.GetSquaredLength());
|
|
Vector3<T> crossProduct = from.CrossProduct(to);
|
|
|
|
return Quaternion(norm + dot, crossProduct.x, crossProduct.y, crossProduct.z).GetNormal();
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::RotateTowards(const Quaternion& from, const Quaternion& to, RadianAngle<T> maxRotation)
|
|
{
|
|
RadianAngle<T> rotationBetween = AngleBetween(from, to);
|
|
if (rotationBetween < maxRotation)
|
|
return to;
|
|
|
|
return Slerp(from, to, std::min(maxRotation.value / rotationBetween.value), 1.f);
|
|
}
|
|
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::Mirror(Quaternion quat, const Vector3<T>& axis)
|
|
{
|
|
float x = std::copysign(T(1.0), axis.x);
|
|
float y = std::copysign(T(1.0), axis.y);
|
|
float z = std::copysign(T(1.0), axis.z);
|
|
|
|
quat.x = y * z * quat.x;
|
|
quat.y = x * z * quat.y;
|
|
quat.z = x * y * quat.z;
|
|
|
|
return quat;
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates spherically the quaternion to other one with a factor of interpolation
|
|
* \return A new quaternion which is the interpolation of two quaternions
|
|
*
|
|
* \param from Initial quaternion
|
|
* \param to Target quaternion
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \see Lerp
|
|
*/
|
|
template<typename T>
|
|
Quaternion<T> Quaternion<T>::Slerp(const Quaternion& from, const Quaternion& to, T interpolation)
|
|
{
|
|
Quaternion q;
|
|
|
|
T cosOmega = from.DotProduct(to);
|
|
if (cosOmega < T(0.0))
|
|
{
|
|
// We invert everything
|
|
q = Quaternion(-to.w, -to.x, -to.y, -to.z);
|
|
cosOmega = -cosOmega;
|
|
}
|
|
else
|
|
q = Quaternion(to);
|
|
|
|
T k0, k1;
|
|
if (cosOmega > T(0.9999))
|
|
{
|
|
// Linear interpolation to avoid division by zero
|
|
k0 = T(1.0) - interpolation;
|
|
k1 = interpolation;
|
|
}
|
|
else
|
|
{
|
|
T sinOmega = std::sqrt(T(1.0) - cosOmega*cosOmega);
|
|
T omega = std::atan2(sinOmega, cosOmega);
|
|
|
|
// To avoid two divisions
|
|
sinOmega = T(1.0)/sinOmega;
|
|
|
|
k0 = std::sin((T(1.0) - interpolation) * omega) * sinOmega;
|
|
k1 = std::sin(interpolation*omega) * sinOmega;
|
|
}
|
|
|
|
Quaternion result(k0 * from.w, k0 * from.x, k0 * from.y, k0 * from.z);
|
|
return result += q * k1;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the quaternion (0, 0, 0, 0)
|
|
* \return A quaternion with components (0, 0, 0, 0)
|
|
*/
|
|
template<typename T>
|
|
constexpr Quaternion<T> Quaternion<T>::Zero()
|
|
{
|
|
return Quaternion(0, 0, 0, 0);
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes a Quaternion
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param quat Input Quaternion
|
|
*/
|
|
template<typename T>
|
|
bool Serialize(SerializationContext& context, const Quaternion<T>& quat, TypeTag<Quaternion<T>>)
|
|
{
|
|
if (!Serialize(context, quat.x))
|
|
return false;
|
|
|
|
if (!Serialize(context, quat.y))
|
|
return false;
|
|
|
|
if (!Serialize(context, quat.z))
|
|
return false;
|
|
|
|
if (!Serialize(context, quat.w))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes a Quaternion
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param quat Output Quaternion
|
|
*/
|
|
template<typename T>
|
|
bool Unserialize(SerializationContext& context, Quaternion<T>* quat, TypeTag<Quaternion<T>>)
|
|
{
|
|
if (!Unserialize(context, &quat->x))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &quat->y))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &quat->z))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &quat->w))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param quat The quaternion to output
|
|
*/
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Quaternion<T>& quat)
|
|
{
|
|
return out << "Quaternion(" << quat.w << " | " << quat.x << ", " << quat.y << ", " << quat.z << ')';
|
|
}
|
|
}
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|