444 lines
10 KiB
C++
444 lines
10 KiB
C++
// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Mathematics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/StringStream.hpp>
|
|
#include <limits>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
#define F(a) static_cast<T>(a)
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
|
|
{
|
|
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
|
{
|
|
Set(planeOne, planeTwo);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>::NzRay(const NzRay<U>& ray)
|
|
{
|
|
Set(ray);
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
T NzRay<T>::ClosestPoint(const NzVector3<T>& point) const
|
|
{
|
|
NzVector3<T> delta = point - origin;
|
|
T vsq = direction.GetSquaredLength();
|
|
T proj = delta.DotProduct(direction);
|
|
|
|
return proj/vsq;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
|
|
{
|
|
return origin + lambda * direction;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzBoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
|
|
{
|
|
switch (volume.extend)
|
|
{
|
|
case nzExtend_Finite:
|
|
{
|
|
if (Intersect(volume.aabb))
|
|
return Intersect(volume.obb, closestHit, furthestHit);
|
|
|
|
return false;
|
|
}
|
|
|
|
case nzExtend_Infinite:
|
|
{
|
|
if (closestHit)
|
|
*closestHit = F(0.0);
|
|
|
|
if (furthestHit)
|
|
*furthestHit = std::numeric_limits<T>::infinity();
|
|
|
|
return true;
|
|
}
|
|
|
|
case nzExtend_Null:
|
|
return false;
|
|
}
|
|
|
|
NazaraError("Invalid extend type (0x" + NzString::Number(volume.extend, 16) + ')');
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzBox<T>& box, T* closestHit, T* furthestHit) const
|
|
{
|
|
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
|
|
T tfirst = F(0.0);
|
|
T tlast = std::numeric_limits<T>::infinity();
|
|
|
|
NzVector3<T> boxMin = box.GetMinimum();
|
|
NzVector3<T> boxMax = box.GetMaximum();
|
|
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
T dir = direction[i];
|
|
T ori = origin[i];
|
|
T max = boxMax[i];
|
|
T min = boxMin[i];
|
|
|
|
if (NzNumberEquals(dir, F(0.0)))
|
|
{
|
|
if (ori < max && ori > min)
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
T tmin = (min - ori) / dir;
|
|
T tmax = (max - ori) / dir;
|
|
if (tmin > tmax)
|
|
std::swap(tmin, tmax);
|
|
|
|
if (tmax < tfirst || tmin > tlast)
|
|
return false;
|
|
|
|
tfirst = std::max(tfirst, tmin);
|
|
tlast = std::min(tlast, tmax);
|
|
}
|
|
|
|
if (closestHit)
|
|
*closestHit = tfirst;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tlast;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzBox<T>& box, const NzMatrix4<T>& transform, T* closestHit, T* furthestHit) const
|
|
{
|
|
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
|
|
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
|
|
T tMin = F(0.0);
|
|
T tMax = std::numeric_limits<T>::infinity();
|
|
|
|
NzVector3<T> boxMin = box.GetMinimum();
|
|
NzVector3<T> boxMax = box.GetMaximum();
|
|
NzVector3<T> delta = transform.GetTranslation() - origin;
|
|
|
|
// Test intersection with the 2 planes perpendicular to the OBB's X axis
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
NzVector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
|
|
T e = axis.DotProduct(delta);
|
|
T f = direction.DotProduct(axis);
|
|
|
|
if (!NzNumberEquals(f, F(0.0)))
|
|
{
|
|
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
|
|
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
|
|
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
|
|
|
|
// We want t1 to represent the nearest intersection,
|
|
// so if it's not the case, invert t1 and t2
|
|
if (t1 > t2)
|
|
std::swap(t1, t2);
|
|
|
|
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t2 < tMax)
|
|
tMax = t2;
|
|
|
|
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t1 > tMin)
|
|
tMin = t1;
|
|
|
|
// And here's the trick :
|
|
// If "far" is closer than "near", then there is NO intersection.
|
|
if (tMax < tMin)
|
|
return false;
|
|
}
|
|
else
|
|
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
|
|
if (-e + boxMin[i] > F(0.0) || -e + boxMax[i] < F(0.0))
|
|
return false;
|
|
}
|
|
|
|
if (closestHit)
|
|
*closestHit = tMin;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tMax;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
|
|
{
|
|
NzVector3<T> corner = orientedBox.GetCorner(nzBoxCorner_FarLeftBottom);
|
|
NzVector3<T> oppositeCorner = orientedBox.GetCorner(nzBoxCorner_NearRightTop);
|
|
|
|
NzVector3<T> width = (orientedBox.GetCorner(nzBoxCorner_NearLeftBottom) - corner);
|
|
NzVector3<T> height = (orientedBox.GetCorner(nzBoxCorner_FarLeftTop) - corner);
|
|
NzVector3<T> depth = (orientedBox.GetCorner(nzBoxCorner_FarRightBottom) - corner);
|
|
|
|
// Construction de la matrice de transformation de l'OBB
|
|
NzMatrix4<T> matrix(width.x, height.x, depth.x, corner.x,
|
|
width.y, height.y, depth.y, corner.y,
|
|
width.z, height.z, depth.z, corner.z,
|
|
F(0.0), F(0.0), F(0.0), F(1.0));
|
|
|
|
matrix.InverseAffine();
|
|
|
|
corner = matrix.Transform(corner);
|
|
oppositeCorner = matrix.Transform(oppositeCorner);
|
|
|
|
NzBox<T> tmpBox(corner, oppositeCorner);
|
|
NzRay<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
|
|
|
|
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzPlane<T>& plane, T* hit) const
|
|
{
|
|
T divisor = plane.normal.DotProduct(direction);
|
|
if (NzNumberEquals(divisor, F(0.0)))
|
|
return false; // perpendicular
|
|
|
|
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
|
|
if (lambda < F(0.0))
|
|
return false; // The plane is 'behind' the ray.
|
|
|
|
if (hit)
|
|
*hit = lambda;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, T* closestHit, T* furthestHit) const
|
|
{
|
|
NzVector3<T> sphereRay = sphere.GetPosition() - origin;
|
|
T length = sphereRay.DotProduct(direction);
|
|
|
|
if (length < F(0.0))
|
|
return false; // ray is perpendicular to the vector origin - center
|
|
|
|
T squaredDistance = sphereRay.GetSquaredLength() - length*length;
|
|
T squaredRadius = sphere.radius*sphere.radius;
|
|
|
|
if (squaredDistance > squaredRadius)
|
|
return false; // if the ray is further than the radius
|
|
|
|
// Calcul des points d'intersection si besoin
|
|
if (closestHit || furthestHit)
|
|
{
|
|
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
|
|
|
|
if (closestHit)
|
|
*closestHit = length - deltaLambda;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = length + deltaLambda;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::MakeAxisX()
|
|
{
|
|
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::MakeAxisY()
|
|
{
|
|
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::MakeAxisZ()
|
|
{
|
|
return Set(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
|
|
{
|
|
direction.Set(directionX, directionY, directionZ);
|
|
origin.Set(X, Y, Z);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
|
|
{
|
|
direction.Set(Direction);
|
|
origin.Set(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
|
{
|
|
T termOne = planeOne.normal.GetLength();
|
|
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
|
|
T termFour = planeTwo.normal.GetLength();
|
|
T det = termOne * termFour - termTwo * termTwo;
|
|
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(det, F(0.0)))
|
|
{
|
|
NzString error("Planes are parallel.");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
T invdet = F(1.0) / det;
|
|
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
|
|
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
|
|
|
|
direction = planeOne.normal.CrossProduct(planeTwo.normal);
|
|
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
|
|
{
|
|
std::memcpy(this, &ray, sizeof(NzRay));
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
|
{
|
|
direction = Direction;
|
|
origin = Origin;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
|
|
{
|
|
direction.Set(ray.direction);
|
|
origin.Set(ray.origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
|
{
|
|
direction.Set(Direction);
|
|
origin.Set(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzString NzRay<T>::ToString() const
|
|
{
|
|
NzStringStream ss;
|
|
|
|
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::operator*(T lambda) const
|
|
{
|
|
return GetPoint(lambda);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::operator==(const NzRay& ray) const
|
|
{
|
|
return direction == ray.direction && origin == ray.origin;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::operator!=(const NzRay& ray) const
|
|
{
|
|
return !operator==(ray);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::AxisX()
|
|
{
|
|
NzRay axis;
|
|
axis.MakeAxisX();
|
|
|
|
return axis;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::AxisY()
|
|
{
|
|
NzRay axis;
|
|
axis.MakeAxisY();
|
|
|
|
return axis;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::AxisZ()
|
|
{
|
|
NzRay axis;
|
|
axis.MakeAxisZ();
|
|
|
|
return axis;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
|
|
{
|
|
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
|
|
}
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
|
|
{
|
|
return out << ray.ToString();
|
|
}
|
|
|
|
#undef F
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|