NazaraEngine/include/Nazara/Core/Algorithm.inl

642 lines
18 KiB
C++

// Copyright (C) 2022 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
// This file is part of the "Nazara Engine - Core module"
// For conditions of distribution and use, see copyright notice in Config.hpp
// http://stackoverflow.com/questions/687490/c0x-how-do-i-expand-a-tuple-into-variadic-template-function-arguments
// Merci à Ryan "FullMetal Alchemist" Lahfa
// Merci aussi à Freedom de siteduzero.com
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/AbstractHash.hpp>
#include <Nazara/Core/ByteArray.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Stream.hpp>
#include <array>
#include <cassert>
#include <climits>
#include <cmath>
#include <limits>
#include <utility>
#include <Nazara/Core/Debug.hpp>
namespace Nz
{
namespace Detail
{
// http://www.cppsamples.com/common-tasks/apply-tuple-to-function.html
template<typename F, typename Tuple, size_t... S>
decltype(auto) ApplyImplFunc(F&& fn, Tuple&& t, std::index_sequence<S...>)
{
return std::forward<F>(fn)(std::get<S>(std::forward<Tuple>(t))...);
}
template<typename O, typename F, typename Tuple, size_t... S>
decltype(auto) ApplyImplMethod(O& object, F&& fn, Tuple&& t, std::index_sequence<S...>)
{
return (object .* std::forward<F>(fn))(std::get<S>(std::forward<Tuple>(t))...);
}
NAZARA_CORE_API extern const UInt8 BitReverseTable256[256];
// https://stackoverflow.com/questions/28675727/using-crc32-algorithm-to-hash-string-at-compile-time
// Generates CRC-32 table, algorithm based from this link:
// http://www.hackersdelight.org/hdcodetxt/crc.c.txt
constexpr auto GenerateCRC32Table(UInt32 polynomial = 0xEDB88320)
{
#ifdef NAZARA_COMPILER_MSVC
// Disable warning: unary minus operator applied to unsigned type, result still unsigned
#pragma warning(push)
#pragma warning(disable: 4146)
#endif
constexpr UInt32 byteCount = 256;
constexpr UInt32 iterationCount = 8;
std::array<UInt32, byteCount> crc32Table{};
for (UInt32 byte = 0u; byte < byteCount; ++byte)
{
UInt32 crc = byte;
for (UInt32 i = 0; i < iterationCount; ++i)
{
UInt32 mask = static_cast<UInt32>(-(crc & 1));
crc = (crc >> 1) ^ (polynomial & mask);
}
crc32Table[byte] = crc;
}
return crc32Table;
#ifdef NAZARA_COMPILER_MSVC
#pragma warning(pop)
#endif
}
// Stores CRC-32 table and softly validates it.
static constexpr auto crc32Table = GenerateCRC32Table();
static_assert(
crc32Table.size() == 256 &&
crc32Table[1] == 0x77073096 &&
crc32Table[255] == 0x2D02EF8D,
"gen_crc32_table generated unexpected result."
);
}
/*!
* \ingroup core
* \brief Access a non-typed struct field by offset
* \return A pointer to the field of the asked type
*
* \param basePtr Pointer to the start of the struct
* \param offset Offset to the field (as generated by offsetof or similar)
*/
template<typename T>
decltype(auto) AccessByOffset(void* basePtr, std::size_t offset)
{
if constexpr (std::is_lvalue_reference_v<T>)
return *reinterpret_cast<std::remove_reference_t<T>*>(static_cast<UInt8*>(basePtr) + offset);
else if constexpr (std::is_pointer_v<T>)
return reinterpret_cast<T>(static_cast<UInt8*>(basePtr) + offset);
else
static_assert(AlwaysFalse<T>(), "AccessByOffset requires a reference or pointer type");
}
/*!
* \ingroup core
* \brief Access a non-typed struct field by offset
* \return A pointer to the field of the asked type
*
* \param basePtr Pointer to the start of the struct
* \param offset Offset to the field (as generated by offsetof or similar)
*/
template<typename T>
decltype(auto) AccessByOffset(const void* basePtr, std::size_t offset)
{
static_assert(std::is_lvalue_reference_v<T> || std::is_pointer_v<T>);
if constexpr (std::is_lvalue_reference_v<T>)
return *reinterpret_cast<std::remove_reference_t<T>*>(static_cast<const UInt8*>(basePtr) + offset);
else if constexpr (std::is_pointer_v<T>)
return reinterpret_cast<T>(static_cast<const UInt8*>(basePtr) + offset);
else
static_assert(AlwaysFalse<T>(), "AccessByOffset requires a reference or pointer type");
}
/*!
* \ingroup core
* \brief Align an offset
* \return Aligned offset according to alignment
*
* \param offset Base offset
* \param alignment Non-zero alignment
*
* \see AlignPow2
*/
template<typename T>
constexpr T Align(T offset, T alignment)
{
assert(alignment > 0);
return ((offset + alignment - 1) / alignment) * alignment;
}
/*!
* \ingroup core
* \brief Align an offset
* \return Aligned offset according to a power of two alignment
*
* \param offset Base offset
* \param alignment Non-zero power of two alignment
*
* \see Align
* \remark This function is quicker than Align but only works with power of two alignment values
*/
template<typename T>
constexpr T AlignPow2(T offset, T alignment)
{
assert(alignment > 0);
assert(IsPowerOfTwo(alignment));
return (offset + alignment - 1) & ~(alignment - 1);
}
/*!
* \ingroup core
* \brief Applies the tuple to the function (e.g. calls the function using the tuple content as arguments)
* \return The result of the function
*
* \param fn Function
* \param t Tuple of arguments for the function
*
* \see Apply
*/
template<typename F, typename Tuple>
decltype(auto) Apply(F&& fn, Tuple&& t)
{
constexpr std::size_t tSize = std::tuple_size<typename std::remove_reference<Tuple>::type>::value;
return Detail::ApplyImplFunc(std::forward<F>(fn), std::forward<Tuple>(t), std::make_index_sequence<tSize>());
}
/*!
* \ingroup core
* \brief Applies the tuple to the member function on an object (e.g. calls the member function using the tuple content as arguments)
* \return The result of the member function called
*
* \param object Object of a class
* \param fn Member function
* \param t Tuple of arguments for the member function
*
* \see Apply
*/
template<typename O, typename F, typename Tuple>
decltype(auto) Apply(O& object, F&& fn, Tuple&& t)
{
constexpr std::size_t tSize = std::tuple_size<typename std::remove_reference<Tuple>::type>::value;
return Detail::ApplyImplMethod(object, std::forward<F>(fn), std::forward<Tuple>(t), std::make_index_sequence<tSize>());
}
/*!
* \ingroup core
* \brief Returns the number of bits occupied by the type T
* \return Number of bits occupied by the type
*/
template<typename T>
constexpr std::size_t BitCount()
{
return CHAR_BIT * sizeof(T);
}
/*!
* \ingroup core
* \brief Computes the hash of a hashable object
* \return A bytearray which represents the hash
*
* \param hash Enumeration of type HashType
* \param v Object to hash
*
* \remark a HashAppend specialization for type T is required
*
* \see ComputeHash
*/
template<typename T>
ByteArray ComputeHash(HashType hash, const T& v)
{
return ComputeHash(*AbstractHash::Get(hash), v);
}
/*!
* \ingroup core
* \brief Computes the hash of a hashable object
* \return A bytearray which represents the hash
*
* \param hash Pointer to abstract hash
* \param v Object to hash
*
* \remark Produce a NazaraAssert if pointer to Abstracthash is invalid
* \remark a HashAppend specialization for type T is required
*
* \see ComputeHash
*/
template<typename T>
ByteArray ComputeHash(AbstractHash& hash, const T& v)
{
hash.Begin();
HashAppend(hash, v);
return hash.End();
}
// From https://stackoverflow.com/questions/28675727/using-crc32-algorithm-to-hash-string-at-compile-time
constexpr UInt32 CRC32(const UInt8* input, std::size_t size) noexcept
{
UInt32 crc = 0xFFFFFFFFu;
for (std::size_t i = 0u; i < size; ++i)
crc = Detail::crc32Table[(crc ^ input[i]) & 0xFF] ^ (crc >> 8);
return ~crc;
}
constexpr UInt32 CRC32(const char* str) noexcept
{
UInt32 crc = 0xFFFFFFFFu;
for (std::size_t i = 0u; auto c = str[i]; ++i)
crc = Detail::crc32Table[(crc ^ str[i]) & 0xFF] ^ (crc >> 8);
return ~crc;
}
constexpr UInt32 CRC32(const std::string_view& str) noexcept
{
UInt32 crc = 0xFFFFFFFFu;
for (std::size_t i = 0u; i < str.size(); ++i)
crc = Detail::crc32Table[(crc ^ str[i]) & 0xFF] ^ (crc >> 8);
return ~crc;
}
template<std::size_t N>
constexpr UInt32 CRC32(const char (&str)[N]) noexcept
{
UInt32 crc = 0xFFFFFFFFu;
for (std::size_t i = 0u; i < N - 1; ++i)
crc = Detail::crc32Table[(crc ^ str[i]) & 0xFF] ^ (crc >> 8);
return ~crc;
}
/*!
* \ingroup core
* \brief Returns the number of elements in a C-array
* \return The number of elements
*
* \see CountOf
*/
template<typename T, std::size_t N>
constexpr std::size_t CountOf(T(&)[N]) noexcept
{
return N;
}
/*!
* \ingroup core
* \brief Returns the number of elements in a container
* \return The number of elements
*
* \param c Container with the member function "size()"
*
* \see CountOf
*/
template<typename T>
std::size_t CountOf(const T& c)
{
return c.size();
}
inline bool HashAppend(AbstractHash& hash, const std::string_view& v)
{
hash.Append(reinterpret_cast<const UInt8*>(v.data()), v.size());
return true;
}
/*!
* \ingroup core
* \brief Combines two hash in one
*
* \param seed First value that will be modified (expected to be 64bits)
* \param v Second value to hash
*/
// Algorithm from CityHash by Google
// http://stackoverflow.com/questions/8513911/how-to-create-a-good-hash-combine-with-64-bit-output-inspired-by-boosthash-co
template<typename T>
void HashCombine(std::size_t& seed, const T& v)
{
const UInt64 kMul = 0x9ddfea08eb382d69ULL;
std::hash<T> hasher;
UInt64 a = (hasher(v) ^ seed) * kMul;
a ^= (a >> 47);
UInt64 b = (seed ^ a) * kMul;
b ^= (b >> 47);
seed = static_cast<std::size_t>(b * kMul);
}
/*!
* \ingroup core
* \brief Check if a value is a power of two
* \return true if value is a power of two
*
* \param value Non-zero value
*/
template<typename T>
bool IsPowerOfTwo(T value)
{
assert(value != 0);
return (value & (value - 1)) == 0;
}
/*!
* \ingroup core
* \brief Reverse the bit order of the integer
* \return integer with reversed bits
*
* \param integer Integer whose bits are to be reversed
*/
template<typename T>
T ReverseBits(T integer)
{
T reversed = 0;
for (std::size_t i = 0; i < sizeof(T); ++i)
reversed |= T(Detail::BitReverseTable256[(integer >> i * 8) & 0xFF]) << (sizeof(T) * 8 - (i + 1) * 8);
return reversed;
}
template<typename To, typename From>
To SafeCast(From&& value)
{
#ifdef NAZARA_COMPILER_MSVC
// Disable unreachable code warnings
#pragma warning(push)
#pragma warning(disable: 4702)
#endif
#if defined(NAZARA_DEBUG) && !defined(NDEBUG)
if constexpr (std::is_integral_v<To>)
{
if constexpr (std::is_enum_v<From>)
{
return SafeCast<To>(static_cast<std::underlying_type_t<From>>(value));
}
else if constexpr (std::is_floating_point_v<From>)
{
assert(std::floor(value) == value);
assert(value <= static_cast<From>(std::numeric_limits<To>::max()));
assert(value >= static_cast<From>(std::numeric_limits<To>::lowest()));
}
else if constexpr (std::is_integral_v<From>)
{
// Type capable of storing the biggest value between the two types
using MaxValueType = std::conditional_t<(sizeof(From) > sizeof(To) || (sizeof(From) == sizeof(To) && std::is_signed_v<To>)), From, To>;
// Type capable of storing the smallest value between the two types
using MinValueType = std::conditional_t<(sizeof(From) > sizeof(To) || (sizeof(From) == sizeof(To) && std::is_signed_v<From>)), From, To>;
if constexpr (!std::is_signed_v<To>)
assert(value >= 0);
assert(static_cast<MaxValueType>(value) <= static_cast<MaxValueType>(std::numeric_limits<To>::max()));
assert(static_cast<MinValueType>(value) >= static_cast<MinValueType>(std::numeric_limits<To>::lowest()));
}
}
else if constexpr (std::is_enum_v<To>)
{
return static_cast<To>(SafeCast<std::underlying_type_t<To>>(value));
}
else if constexpr (std::is_floating_point_v<To>)
{
if constexpr (std::is_floating_point_v<From>)
{
// Type capable of storing the biggest value between the two types
using MaxValueType = std::conditional_t<(sizeof(From) > sizeof(To)), From, To>;
// Type capable of storing the smallest value between the two types
using MinValueType = std::conditional_t<(sizeof(From) > sizeof(To)), From, To>;
assert(static_cast<MaxValueType>(value) <= static_cast<MaxValueType>(std::numeric_limits<To>::max()));
assert(static_cast<MinValueType>(value) >= static_cast<MinValueType>(std::numeric_limits<To>::lowest()));
}
}
else if constexpr (std::is_reference_v<To>)
{
if constexpr (std::is_reference_v<From>)
{
using BaseFromType = std::remove_reference_t<std::remove_cv_t<From>>;
using BaseToType = std::remove_reference_t<std::remove_cv_t<To>>;
if constexpr (!std::is_same_v<BaseFromType, BaseToType> && std::is_base_of_v<From, To> && std::is_polymorphic_v<From>)
{
using ToPtr = std::add_pointer_t<std::remove_reference_t<To>>;
assert(dynamic_cast<ToPtr>(&value) != nullptr);
}
}
}
else if constexpr (std::is_pointer_v<To>)
{
if constexpr (std::is_pointer_v<From>)
{
using BaseFromType = std::remove_pointer_t<std::remove_cv_t<From>>;
using BaseToType = std::remove_pointer_t<std::remove_cv_t<To>>;
if constexpr (!std::is_same_v<BaseFromType, BaseToType> && std::is_base_of_v<From, To> && std::is_polymorphic_v<From>)
{
assert(dynamic_cast<To>(value) != nullptr);
}
}
}
#endif
return static_cast<To>(value);
#ifdef NAZARA_COMPILER_MSVC
#pragma warning(pop)
#endif
}
template<typename T>
constexpr auto UnderlyingCast(T value) -> std::underlying_type_t<T>
{
return static_cast<std::underlying_type_t<T>>(value);
}
template<typename T> struct PointedType<T*> { using type = T; };
template<typename T> struct PointedType<T* const> { using type = T; };
template<typename T> struct PointedType<T* volatile> { using type = T; };
template<typename T> struct PointedType<T* const volatile> { using type = T; };
template<typename T>
bool Serialize(SerializationContext& context, T&& value)
{
return Serialize(context, std::forward<T>(value), TypeTag<std::decay_t<T>>());
}
/*!
* \ingroup core
* \brief Serializes a boolean
* \return true if serialization succeeded
*
* \param context Context for the serialization
* \param value Boolean to serialize
*
* \see Serialize, Unserialize
*/
inline bool Serialize(SerializationContext& context, bool value, TypeTag<bool>)
{
if (context.writeBitPos == 8)
{
context.writeBitPos = 0;
context.writeByte = 0;
}
if (value)
context.writeByte |= 1 << context.writeBitPos;
if (++context.writeBitPos >= 8)
return Serialize(context, context.writeByte, TypeTag<UInt8>());
else
return true;
}
/*!
* \ingroup core
* \brief Serializes a std::string
* \return true if successful
*
* \param context Context for the serialization
* \param value String to serialize
*/
bool Serialize(SerializationContext& context, const std::string& value, TypeTag<std::string>)
{
if (!Serialize(context, UInt32(value.size()), TypeTag<UInt32>()))
return false;
return context.stream->Write(value.data(), value.size()) == value.size();
}
/*!
* \ingroup core
* \brief Serializes an arithmetic type
* \return true if serialization succeeded
*
* \param context Context for the serialization
* \param value Arithmetic type to serialize
*
* \see Serialize, Unserialize
*/
template<typename T>
std::enable_if_t<std::is_arithmetic<T>::value, bool> Serialize(SerializationContext& context, T value, TypeTag<T>)
{
// Flush bits in case a writing is in progress
context.FlushBits();
if (context.endianness != Endianness::Unknown && context.endianness != GetPlatformEndianness())
SwapBytes(&value, sizeof(T));
return context.stream->Write(&value, sizeof(T)) == sizeof(T);
}
template<typename T>
bool Unserialize(SerializationContext& context, T* value)
{
return Unserialize(context, value, TypeTag<T>());
}
/*!
* \ingroup core
* \brief Unserializes a boolean
* \return true if unserialization succedeed
*
* \param context Context for the unserialization
* \param value Pointer to boolean to unserialize
*
* \see Serialize, Unserialize
*/
inline bool Unserialize(SerializationContext& context, bool* value, TypeTag<bool>)
{
if (context.readBitPos == 8)
{
if (!Unserialize(context, &context.readByte, TypeTag<UInt8>()))
return false;
context.readBitPos = 0;
}
if (value)
*value = (context.readByte & (1 << context.readBitPos)) != 0;
context.readBitPos++;
return true;
}
/*!
* \brief Unserializes a string
* \return true if successful
*
* \param context Context of unserialization
* \param string std::string to unserialize
*/
bool Unserialize(SerializationContext& context, std::string* string, TypeTag<std::string>)
{
UInt32 size;
if (!Unserialize(context, &size, TypeTag<UInt32>()))
return false;
string->resize(size);
return context.stream->Read(&(*string)[0], size) == size;
}
/*!
* \ingroup core
* \brief Unserializes an arithmetic type
* \return true if unserialization succedeed
*
* \param context Context for the unserialization
* \param value Pointer to arithmetic type to serialize
*
* \remark Produce a NazaraAssert if pointer to value is invalid
*
* \see Serialize, Unserialize
*/
template<typename T>
std::enable_if_t<std::is_arithmetic<T>::value, bool> Unserialize(SerializationContext& context, T* value, TypeTag<T>)
{
NazaraAssert(value, "Invalid data pointer");
context.ResetReadBitPosition();
if (context.stream->Read(value, sizeof(T)) == sizeof(T))
{
if (context.endianness != Endianness::Unknown && context.endianness != GetPlatformEndianness())
SwapBytes(value, sizeof(T));
return true;
}
else
return false;
}
}
#include <Nazara/Core/DebugOff.hpp>