NazaraEngine/include/Nazara/Math/Quaternion.inl

404 lines
8.2 KiB
C++

// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Basic.hpp>
#include <Nazara/Math/Config.hpp>
#include <Nazara/Math/EulerAngles.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzQuaternion<T>::NzQuaternion()
{
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T W, T X, T Y, T Z)
{
Set(W, X, Y, Z);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T quat[4])
{
Set(quat);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(T angle, const NzVector3<T>& axis)
{
Set(angle, axis);
}
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzEulerAngles<T>& angles)
{
Set(angles);
}
/*
template<typename T>
NzQuaternion<T>::NzQuaternion(const NzMatrix3<T>& mat)
{
Set(mat);
}
*/
template<typename T>
template<typename U>
NzQuaternion<T>::NzQuaternion(const NzQuaternion<U>& quat)
{
Set(quat);
}
template<typename T>
T NzQuaternion<T>::DotProduct(const NzQuaternion& quat) const
{
return w*quat.w + x*quat.x + y*quat.y + z*quat.z;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetConjugate() const
{
return NzQuaternion(w, -x, -y, -z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::GetNormalized() const
{
NzQuaternion<T> quat(*this);
quat.Normalize();
return quat;
}
template<typename T>
void NzQuaternion<T>::MakeIdentity()
{
Set(1.0, 0.0, 0.0, 0.0);
}
template<typename T>
void NzQuaternion<T>::MakeZero()
{
Set(0.0, 0.0, 0.0, 0.0);
}
template<typename T>
T NzQuaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
template<typename T>
T NzQuaternion<T>::Normalize()
{
T squaredMagnitude = SquaredMagnitude();
if (squaredMagnitude-F(1.0) > std::numeric_limits<T>::epsilon())
{
T magnitude = std::sqrt(squaredMagnitude);
w /= magnitude;
x /= magnitude;
y /= magnitude;
z /= magnitude;
return magnitude;
}
else
return F(1.0); // Le quaternion est déjà normalisé
}
template<typename T>
void NzQuaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
}
template<typename T>
void NzQuaternion<T>::Set(T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
}
template<typename T>
void NzQuaternion<T>::Set(T angle, const NzVector3<T>& normalizedAxis)
{
#if !NAZARA_MATH_ANGLE_RADIAN
angle = NzDegreeToRadian(angle);
#endif
angle /= 2;
auto sinAngle = std::sin(angle);
w = std::cos(angle);
x = normalizedAxis.x * sinAngle;
y = normalizedAxis.y * sinAngle;
z = normalizedAxis.z * sinAngle;
}
template<typename T>
void NzQuaternion<T>::Set(const NzEulerAngles<T>& angles)
{
Set(angles.ToQuaternion());
}
template<typename T>
template<typename U>
void NzQuaternion<T>::Set(const NzQuaternion<U>& quat)
{
w = static_cast<T>(quat.w);
x = static_cast<T>(quat.x);
y = static_cast<T>(quat.y);
z = static_cast<T>(quat.z);
}
template<typename T>
void NzQuaternion<T>::Set(const NzQuaternion& quat)
{
w = quat.w;
x = quat.x;
y = quat.y;
z = quat.z;
}
template<typename T>
T NzQuaternion<T>::SquaredMagnitude() const
{
return w*w + x*x + y*y + z*z;
}
template<typename T>
NzEulerAngles<T> NzQuaternion<T>::ToEulerAngles() const
{
T test = x*y + z*w;
if (test > F(0.499))
// singularity at north pole
return NzEulerAngles<T>(NzDegrees(F(90.0)), NzRadians(F(2.0) * std::atan2(x, w)), F(0.0));
if (test < F(-0.499))
return NzEulerAngles<T>(NzDegrees(F(-90.0)), NzRadians(F(-2.0) * std::atan2(x, w)), F(0.0));
T xx = x*x;
T yy = y*y;
T zz = z*z;
return NzEulerAngles<T>(NzRadians(std::atan2(F(2.0)*x*w - F(2.0)*y*z, F(1.0) - F(2.0)*xx - F(2.0)*zz)),
NzRadians(std::atan2(F(2.0)*y*w - F(2.0)*x*z, F(1.0) - F(2.0)*yy - F(2.0)*zz)),
NzRadians(std::asin(F(2.0)*test)));
}
template<typename T>
NzString NzQuaternion<T>::ToString() const
{
NzStringStream ss;
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
template<typename T>
NzQuaternion<T>::operator NzString() const
{
return ToString();
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator=(const NzQuaternion& quat)
{
Set(quat);
return *this;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator+(const NzQuaternion& quat) const
{
return NzQuaternion(w + quat.w,
x + quat.x,
y + quat.y,
z + quat.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(const NzQuaternion& quat) const
{
return NzQuaternion(w*quat.w - x*quat.x - y*quat.y - z*quat.z,
w*quat.x + x*quat.w + y*quat.z - z*quat.y,
w*quat.y + y*quat.w + z*quat.x - x*quat.z,
w*quat.z + z*quat.w + x*quat.y - y*quat.x);
}
template<typename T>
NzVector3<T> NzQuaternion<T>::operator*(const NzVector3<T>& vec) const
{
NzVector3<T> normal(vec);
normal.Normalize();
NzQuaternion qvec(0.0, normal.x, normal.y, normal.z);
NzQuaternion result(operator*(qvec * GetConjugate()));
return NzVector3<T>(result.x, result.y, result.z);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator*(T scale) const
{
return NzQuaternion(w * scale,
x * scale,
y * scale,
z * scale);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::operator/(const NzQuaternion& quat) const
{
return GetConjugate(quat) * (*this);
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator+=(const NzQuaternion& quat)
{
return operator=(operator+(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(const NzQuaternion& quat)
{
return operator=(operator*(quat));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
template<typename T>
NzQuaternion<T>& NzQuaternion<T>::operator/=(const NzQuaternion& quat)
{
return operator=(operator/(quat));
}
template<typename T>
bool NzQuaternion<T>::operator==(const NzQuaternion& quat) const
{
return NzNumberEquals(w, quat.w) &&
NzNumberEquals(x, quat.x) &&
NzNumberEquals(y, quat.y) &&
NzNumberEquals(z, quat.z);
}
template<typename T>
bool NzQuaternion<T>::operator!=(const NzQuaternion& quat) const
{
return !operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator<(const NzQuaternion& quat) const
{
return w < quat.w && x < quat.x && y < quat.y && z < quat.z;
}
template<typename T>
bool NzQuaternion<T>::operator<=(const NzQuaternion& quat) const
{
return operator<(quat) || operator==(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>(const NzQuaternion& quat) const
{
return !operator<=(quat);
}
template<typename T>
bool NzQuaternion<T>::operator>=(const NzQuaternion& quat) const
{
return !operator<(quat);
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Identity()
{
NzQuaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Slerp(const NzQuaternion& quatA, const NzQuaternion& quatB, T interp)
{
if (interp <= F(0.0))
return quatA;
if (interp >= F(1.0))
return quatB;
NzQuaternion q;
T cosOmega = quatA.DotProduct(quatB);
if (cosOmega < F(0.0))
{
// On inverse tout
q.Set(-quatB.w, -quatB.x, -quatB.y, -quatB.z);
cosOmega = -cosOmega;
}
else
q.Set(quatB);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Interpolation linéaire pour éviter une division par zéro
k0 = F(1.0) - interp;
k1 = interp;
}
else
{
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
T omega = std::atan2(sinOmega, cosOmega);
// Pour éviter deux divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interp) * omega) * sinOmega;
k1 = std::sin(interp*omega) * sinOmega;
}
NzQuaternion result(k0 * quatA.w, k0 * quatA.x, k0 * quatA.y, k0 * quatA.z);
return result += q*k1;
}
template<typename T>
NzQuaternion<T> NzQuaternion<T>::Zero()
{
NzQuaternion quaternion;
quaternion.MakeZero();
return quaternion;
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzQuaternion<T>& quat)
{
return out << quat.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>