NazaraEngine/src/Nazara/3D/Scene.cpp

421 lines
12 KiB
C++

// Copyright (C) 2013 Jérôme Leclercq
// This file is part of the "Nazara Engine - 3D Module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/3D/Scene.hpp>
#include <Nazara/2D/Drawable.hpp>
#include <Nazara/3D/Camera.hpp>
#include <Nazara/3D/Light.hpp>
#include <Nazara/3D/Model.hpp>
#include <Nazara/3D/RenderQueue.hpp>
#include <Nazara/3D/SceneRoot.hpp>
#include <Nazara/Core/Clock.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/ShaderBuilder.hpp>
#include <Nazara/Utility/BufferMapper.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <functional>
#include <set>
#include <vector>
#include <Nazara/3D/Debug.hpp>
namespace
{
const unsigned int maxLights = 8; ///TODO: Config
struct LightComparator
{
bool operator()(const NzLight* light1, const NzLight* light2)
{
return light1->GetPosition().SquaredDistance(pos) < light2->GetPosition().SquaredDistance(pos);
}
NzVector3f pos;
};
}
struct NzSceneImpl
{
NzSceneImpl(NzScene* scene) :
root(scene)
{
}
std::vector<NzUpdatable*> updateList;
std::vector<NzUpdatable*> visibleUpdateList;
std::vector<NzRenderer::InstancingData> instancingData;
NzClock updateClock;
NzColor ambientColor = NzColor(25,25,25);
NzRenderQueue renderQueue;
NzSceneRoot root;
const NzCamera* activeCamera;
NzVertexBuffer* skinningBuffer;
bool update;
float frameTime;
float updateTime;
unsigned int updatePerSecond = 60;
};
NzScene::NzScene()
{
m_impl = new NzSceneImpl(this);
m_impl->skinningBuffer = new NzVertexBuffer(NzMesh::GetDeclaration(), 20000, nzBufferStorage_Hardware, nzBufferUsage_Dynamic);
if (NzRenderer::HasCapability(nzRendererCap_Instancing))
m_impl->instancingData.resize(NAZARA_RENDERER_INSTANCING_MAX);
}
NzScene::~NzScene()
{
for (NzNode* child : m_impl->root.GetChilds())
{
if (child->GetNodeType() == nzNodeType_Scene)
static_cast<NzSceneNode*>(child)->SetScene(nullptr);
}
delete m_impl->skinningBuffer;
delete m_impl;
}
void NzScene::AddToVisibilityList(NzUpdatable* object)
{
m_impl->visibleUpdateList.push_back(object);
}
void NzScene::Cull()
{
m_impl->renderQueue.Clear();
m_impl->visibleUpdateList.clear();
// Frustum culling
RecursiveFrustumCull(m_impl->renderQueue, m_impl->activeCamera->GetFrustum(), &m_impl->root);
///TODO: Occlusion culling
///TODO: Light culling
}
void NzScene::Draw()
{
NzRenderer::Clear(nzRendererClear_Depth);
LightComparator lightComparator;
// Pour les meshs squelettiques, on utilise un buffer commun
NzRenderer::SetVertexBuffer(m_impl->skinningBuffer);
for (auto matIt : m_impl->renderQueue.visibleSkeletalModels)
{
// On applique le shader du matériau
nzUInt32 shaderFlags = matIt.first->GetShaderFlags();
const NzShader* shader = NzShaderBuilder::Get(shaderFlags);
NzRenderer::SetShader(shader);
matIt.first->Apply(shader);
// Position de la caméra
int camPosLocation = shader->GetUniformLocation("CameraPosition");
if (camPosLocation != -1)
shader->SendVector(camPosLocation, m_impl->activeCamera->GetPosition());
// Couleur ambiante de la scène
int sceneAmbientLocation = shader->GetUniformLocation("SceneAmbient");
if (sceneAmbientLocation != -1)
shader->SendColor(sceneAmbientLocation, m_impl->ambientColor);
// Gestion des lumières (D'abord directionnelles)
int lightCountLocation = shader->GetUniformLocation("LightCount");
unsigned int lightIndex = 0;
if (lightCountLocation != -1)
{
for (const NzLight* light : m_impl->renderQueue.directionnalLights)
{
light->Apply(shader, lightIndex++);
if (lightIndex > maxLights)
break; // N'arrivera jamais mais pourrait résulter en un bug
}
}
for (auto subMeshIt : matIt.second)
{
const NzSkeletalMesh* skeletalMesh = subMeshIt.first;
const NzIndexBuffer* indexBuffer = skeletalMesh->GetIndexBuffer();
unsigned int vertexCount = skeletalMesh->GetVertexCount();
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveType, unsigned int, unsigned int)> drawFunc;
nzPrimitiveType primitiveType = skeletalMesh->GetPrimitiveType();
unsigned int indexCount;
if (indexBuffer)
{
drawFunc = NzRenderer::DrawIndexedPrimitives;
indexCount = indexBuffer->GetIndexCount();
NzRenderer::SetIndexBuffer(indexBuffer);
}
else
{
drawFunc = NzRenderer::DrawPrimitives;
indexCount = skeletalMesh->GetVertexCount();
}
for (const NzRenderQueue::SkeletalData& data : subMeshIt.second)
{
// Transfert du résultat du skinning vers notre buffer hardware
NzBufferMapper<NzVertexBuffer> outputMapper(m_impl->skinningBuffer, nzBufferAccess_DiscardAndWrite, 0, vertexCount);
std::memcpy(outputMapper.GetPointer(), &data.skinnedVertices[0], vertexCount*sizeof(NzMeshVertex));
outputMapper.Unmap();
// Calcul des lumières les plus proches (TODO: LightManager ?)
if (lightCountLocation != -1)
{
auto visibleLights = m_impl->renderQueue.visibleLights;
lightComparator.pos = data.transformMatrix.GetTranslation();
std::sort(visibleLights.begin(), visibleLights.end(), lightComparator);
const unsigned int maxLightPerObject = 3; ///TODO: Config
unsigned int max = std::min(std::min(maxLights - lightIndex, maxLightPerObject), static_cast<unsigned int>(visibleLights.size()));
for (unsigned int i = 0; i < max; ++i)
visibleLights[i]->Apply(shader, lightIndex + i);
shader->SendInteger(lightCountLocation, lightIndex + max);
}
NzRenderer::SetMatrix(nzMatrixType_World, data.transformMatrix);
drawFunc(primitiveType, 0, indexCount);
}
}
}
// Pour les meshs statiques, on utilise le buffer du mesh
for (auto matIt : m_impl->renderQueue.visibleStaticModels)
{
// On applique le shader du matériau
nzUInt32 shaderFlags = matIt.first->GetShaderFlags();
if (NzRenderer::HasCapability(nzRendererCap_Instancing) && m_impl->renderQueue.visibleLights.empty())
shaderFlags |= nzShaderFlags_Instancing;
const NzShader* shader = NzShaderBuilder::Get(shaderFlags);
NzRenderer::SetShader(shader);
matIt.first->Apply(shader);
bool instancing = shader->GetFlags() & nzShaderFlags_Instancing;
// Position de la caméra
int camPosLocation = shader->GetUniformLocation("CameraPosition");
if (camPosLocation != -1)
shader->SendVector(camPosLocation, m_impl->activeCamera->GetPosition());
// Couleur ambiante de la scène
int sceneAmbientLocation = shader->GetUniformLocation("SceneAmbient");
if (sceneAmbientLocation != -1)
shader->SendColor(sceneAmbientLocation, m_impl->ambientColor);
// Gestion des lumières (D'abord directionnelles)
int lightCountLocation = shader->GetUniformLocation("LightCount");
unsigned int lightIndex = 0;
if (lightCountLocation != -1)
{
for (const NzLight* light : m_impl->renderQueue.directionnalLights)
{
light->Apply(shader, lightIndex++);
if (lightIndex > maxLights)
break; // N'arrivera probablement jamais mais pourrait résulter en un bug
}
}
for (auto subMeshIt : matIt.second)
{
NzStaticMesh* staticMesh = subMeshIt.first;
const NzIndexBuffer* indexBuffer = staticMesh->GetIndexBuffer();
const NzVertexBuffer* vertexBuffer = staticMesh->GetVertexBuffer();
NzRenderer::SetVertexBuffer(vertexBuffer);
// Gestion du draw call avant la boucle de rendu
std::function<void(nzPrimitiveType, unsigned int, unsigned int)> draw;
std::function<void(unsigned int, nzPrimitiveType, unsigned int, unsigned int)> instancedDraw;
nzPrimitiveType primitiveType = staticMesh->GetPrimitiveType();
unsigned int indexCount;
if (indexBuffer)
{
draw = NzRenderer::DrawIndexedPrimitives;
indexCount = indexBuffer->GetIndexCount();
instancedDraw = NzRenderer::DrawIndexedPrimitivesInstanced;
NzRenderer::SetIndexBuffer(indexBuffer);
}
else
{
draw = NzRenderer::DrawPrimitives;
indexCount = vertexBuffer->GetVertexCount();
instancedDraw = NzRenderer::DrawPrimitivesInstanced;
}
if (instancing)
{
shader->SendInteger(lightCountLocation, lightIndex);
unsigned int count = 0;
for (const NzMatrix4f& matrix : subMeshIt.second)
{
m_impl->instancingData[count++].worldMatrix = matrix;
if (count == m_impl->instancingData.size())
{
NzRenderer::SetInstancingData(&m_impl->instancingData[0], count);
instancedDraw(count, primitiveType, 0, indexCount);
count = 0;
}
}
if (count > 0)
{
NzRenderer::SetInstancingData(&m_impl->instancingData[0], count);
instancedDraw(count, primitiveType, 0, indexCount);
}
}
else
{
for (const NzMatrix4f& matrix : subMeshIt.second)
{
// Calcul des lumières les plus proches (TODO: LightManager ?)
if (lightCountLocation != -1)
{
std::vector<const NzLight*>& visibleLights = m_impl->renderQueue.visibleLights;
lightComparator.pos = matrix.GetTranslation();
std::sort(visibleLights.begin(), visibleLights.end(), lightComparator);
const unsigned int maxLightPerObject = 3; ///TODO: Config
unsigned int max = std::min(std::min(maxLights - lightIndex, maxLightPerObject), visibleLights.size());
for (unsigned int i = 0; i < max; ++i)
visibleLights[i]->Apply(shader, lightIndex + i);
shader->SendInteger(lightCountLocation, lightIndex + max);
}
NzRenderer::SetMatrix(nzMatrixType_World, matrix);
draw(primitiveType, 0, indexCount);
}
}
}
}
// Les autres drawables (Exemple: Terrain)
for (const NzDrawable* drawable : m_impl->renderQueue.otherDrawables)
drawable->Draw();
}
NzSceneNode& NzScene::GetRoot() const
{
return m_impl->root;
}
float NzScene::GetUpdateTime() const
{
return m_impl->updateTime;
}
unsigned int NzScene::GetUpdatePerSecond() const
{
return m_impl->updatePerSecond;
}
void NzScene::RegisterForUpdate(NzUpdatable* object)
{
#if NAZARA_3D_SAFE
if (!object)
{
NazaraError("Invalid object");
return;
}
#endif
m_impl->updateList.push_back(object);
}
void NzScene::SetAmbientColor(const NzColor& color)
{
m_impl->ambientColor = color;
}
void NzScene::SetUpdatePerSecond(unsigned int updatePerSecond)
{
m_impl->updatePerSecond = updatePerSecond;
}
void NzScene::UnregisterForUpdate(NzUpdatable* object)
{
#if NAZARA_3D_SAFE
if (!object)
{
NazaraError("Invalid object");
return;
}
#endif
auto it = std::find(m_impl->updateList.begin(), m_impl->updateList.end(), object);
if (it != m_impl->updateList.end())
m_impl->updateList.erase(it);
}
void NzScene::Update()
{
m_impl->update = (m_impl->updatePerSecond == 0 || m_impl->updateClock.GetMilliseconds() > 1000/m_impl->updatePerSecond);
if (m_impl->update)
{
m_impl->updateTime = m_impl->updateClock.GetSeconds();
m_impl->updateClock.Restart();
for (NzUpdatable* updatable : m_impl->updateList)
///TODO: Multihreading
updatable->Update();
}
}
void NzScene::UpdateVisible()
{
if (m_impl->update)
{
for (NzUpdatable* node : m_impl->visibleUpdateList)
node->Update();
}
}
NzScene::operator const NzSceneNode&() const
{
return m_impl->root;
}
void NzScene::RecursiveFrustumCull(NzRenderQueue& renderQueue, const NzFrustumf& frustum, NzNode* node)
{
for (NzNode* child : node->GetChilds())
{
if (child->GetNodeType() == nzNodeType_Scene)
{
NzSceneNode* sceneNode = static_cast<NzSceneNode*>(child);
///TODO: Empêcher le rendu des enfants si le parent est cullé selon un flag
sceneNode->UpdateVisibility(frustum);
if (sceneNode->IsVisible())
sceneNode->AddToRenderQueue(renderQueue);
}
if (child->HasChilds())
RecursiveFrustumCull(renderQueue, frustum, child);
}
}
void NzScene::SetActiveCamera(const NzCamera* camera)
{
m_impl->activeCamera = camera;
}