NazaraEngine/include/Nazara/Math/Vector3.inl

706 lines
12 KiB
C++

// Copyright (C) 2015 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <cstring>
#include <limits>
#include <stdexcept>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
namespace Nz
{
template<typename T>
Vector3<T>::Vector3(T X, T Y, T Z)
{
Set(X, Y, Z);
}
template<typename T>
Vector3<T>::Vector3(T X, const Vector2<T>& vec)
{
Set(X, vec);
}
template<typename T>
Vector3<T>::Vector3(T scale)
{
Set(scale);
}
template<typename T>
Vector3<T>::Vector3(const T vec[3])
{
Set(vec);
}
template<typename T>
Vector3<T>::Vector3(const Vector2<T>& vec, T Z)
{
Set(vec, Z);
}
template<typename T>
template<typename U>
Vector3<T>::Vector3(const Vector3<U>& vec)
{
Set(vec);
}
template<typename T>
Vector3<T>::Vector3(const Vector4<T>& vec)
{
Set(vec);
}
template<typename T>
T Vector3<T>::AbsDotProduct(const Vector3& vec) const
{
return std::abs(x * vec.x) + std::abs(y * vec.y) + std::abs(z * vec.z);
}
template<typename T>
T Vector3<T>::AngleBetween(const Vector3& vec) const
{
// sqrt(a) * sqrt(b) = sqrt(a*b)
T divisor = std::sqrt(GetSquaredLength() * vec.GetSquaredLength());
#if NAZARA_MATH_SAFE
if (NumberEquals(divisor, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T alpha = DotProduct(vec)/divisor;
return FromRadians(std::acos(Clamp(alpha, F(-1.0), F(1.0))));
}
template<typename T>
Vector3<T> Vector3<T>::CrossProduct(const Vector3& vec) const
{
return Vector3(y * vec.z - z * vec.y, z * vec.x - x * vec.z, x * vec.y - y * vec.x);
}
template<typename T>
T Vector3<T>::Distance(const Vector3& vec) const
{
return std::sqrt(SquaredDistance(vec));
}
template<typename T>
float Vector3<T>::Distancef(const Vector3& vec) const
{
return std::sqrt(static_cast<float>(SquaredDistance(vec)));
}
template<typename T>
T Vector3<T>::DotProduct(const Vector3& vec) const
{
return x*vec.x + y*vec.y + z*vec.z;
}
template<typename T>
T Vector3<T>::GetLength() const
{
return std::sqrt(GetSquaredLength());
}
template<typename T>
float Vector3<T>::GetLengthf() const
{
return std::sqrt(static_cast<float>(GetSquaredLength()));
}
template<typename T>
Vector3<T> Vector3<T>::GetNormal(T* length) const
{
Vector3 vec(*this);
vec.Normalize(length);
return vec;
}
template<typename T>
T Vector3<T>::GetSquaredLength() const
{
return x*x + y*y + z*z;
}
template<typename T>
Vector3<T>& Vector3<T>::MakeBackward()
{
return Set(F(0.0), F(0.0), F(1.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeDown()
{
return Set(F(0.0), F(-1.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeForward()
{
return Set(F(0.0), F(0.0), F(-1.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeLeft()
{
return Set(F(-1.0), F(0.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeRight()
{
return Set(F(1.0), F(0.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeUnit()
{
return Set(F(1.0), F(1.0), F(1.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeUnitX()
{
return Set(F(1.0), F(0.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeUnitY()
{
return Set(F(0.0), F(1.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeUnitZ()
{
return Set(F(0.0), F(0.0), F(1.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeUp()
{
return Set(F(0.0), F(1.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::MakeZero()
{
return Set(F(0.0), F(0.0), F(0.0));
}
template<typename T>
Vector3<T>& Vector3<T>::Maximize(const Vector3& vec)
{
if (vec.x > x)
x = vec.x;
if (vec.y > y)
y = vec.y;
if (vec.z > z)
z = vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Minimize(const Vector3& vec)
{
if (vec.x < x)
x = vec.x;
if (vec.y < y)
y = vec.y;
if (vec.z < z)
z = vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Normalize(T* length)
{
T norm = GetLength();
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
}
if (length)
*length = norm;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(T X, T Y, T Z)
{
x = X;
y = Y;
z = Z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(T X, const Vector2<T>& vec)
{
x = X;
y = vec.x;
z = vec.y;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(T scale)
{
x = scale;
y = scale;
z = scale;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(const T vec[3])
{
std::memcpy(&x, vec, 3*sizeof(T));
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(const Vector2<T>& vec, T Z)
{
x = vec.x;
y = vec.y;
z = Z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(const Vector3& vec)
{
std::memcpy(this, &vec, sizeof(Vector3));
return *this;
}
template<typename T>
template<typename U>
Vector3<T>& Vector3<T>::Set(const Vector3<U>& vec)
{
x = F(vec.x);
y = F(vec.y);
z = F(vec.z);
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::Set(const Vector4<T>& vec)
{
x = vec.x;
y = vec.y;
z = vec.z;
return *this;
}
template<typename T>
T Vector3<T>::SquaredDistance(const Vector3& vec) const
{
return (*this - vec).GetSquaredLength();
}
template<typename T>
String Vector3<T>::ToString() const
{
StringStream ss;
return ss << "Vector3(" << x << ", " << y << ", " << z <<')';
}
template<typename T>
Vector3<T>::operator T*()
{
return &x;
}
template<typename T>
Vector3<T>::operator const T*() const
{
return &x;
}
template<typename T>
const Vector3<T>& Vector3<T>::operator+() const
{
return *this;
}
template<typename T>
Vector3<T> Vector3<T>::operator-() const
{
return Vector3(-x, -y, -z);
}
template<typename T>
Vector3<T> Vector3<T>::operator+(const Vector3& vec) const
{
return Vector3(x + vec.x, y + vec.y, z + vec.z);
}
template<typename T>
Vector3<T> Vector3<T>::operator-(const Vector3& vec) const
{
return Vector3(x - vec.x, y - vec.y, z - vec.z);
}
template<typename T>
Vector3<T> Vector3<T>::operator*(const Vector3& vec) const
{
return Vector3(x * vec.x, y * vec.y, z * vec.z);
}
template<typename T>
Vector3<T> Vector3<T>::operator*(T scale) const
{
return Vector3(x * scale, y * scale, z * scale);
}
template<typename T>
Vector3<T> Vector3<T>::operator/(const Vector3& vec) const
{
#if NAZARA_MATH_SAFE
if (NumberEquals(vec.x, F(0.0)) || NumberEquals(vec.y, F(0.0)) || NumberEquals(vec.z, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Vector3(x / vec.x, y / vec.y, z / vec.z);
}
template<typename T>
Vector3<T> Vector3<T>::operator/(T scale) const
{
#if NAZARA_MATH_SAFE
if (NumberEquals(scale, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Vector3(x / scale, y / scale, z / scale);
}
template<typename T>
Vector3<T>& Vector3<T>::operator+=(const Vector3& vec)
{
x += vec.x;
y += vec.y;
z += vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::operator-=(const Vector3& vec)
{
x -= vec.x;
y -= vec.y;
z -= vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::operator*=(const Vector3& vec)
{
x *= vec.x;
y *= vec.y;
z *= vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::operator*=(T scale)
{
x *= scale;
y *= scale;
z *= scale;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::operator/=(const Vector3& vec)
{
if (NumberEquals(vec.x, F(0.0)) || NumberEquals(vec.y, F(0.0)) || NumberEquals(vec.z, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
x /= vec.x;
y /= vec.y;
z /= vec.z;
return *this;
}
template<typename T>
Vector3<T>& Vector3<T>::operator/=(T scale)
{
if (NumberEquals(scale, F(0.0)))
{
String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
x /= scale;
y /= scale;
z /= scale;
return *this;
}
template<typename T>
bool Vector3<T>::operator==(const Vector3& vec) const
{
return NumberEquals(x, vec.x) &&
NumberEquals(y, vec.y) &&
NumberEquals(z, vec.z);
}
template<typename T>
bool Vector3<T>::operator!=(const Vector3& vec) const
{
return !operator==(vec);
}
template<typename T>
bool Vector3<T>::operator<(const Vector3& vec) const
{
if (x == vec.x)
{
if (y == vec.y)
return z < vec.z;
else
return y < vec.y;
}
else
return x < vec.x;
}
template<typename T>
bool Vector3<T>::operator<=(const Vector3& vec) const
{
if (x == vec.x)
{
if (y == vec.y)
return z <= vec.z;
else
return y < vec.y;
}
else
return x < vec.x;
}
template<typename T>
bool Vector3<T>::operator>(const Vector3& vec) const
{
return !operator<=(vec);
}
template<typename T>
bool Vector3<T>::operator>=(const Vector3& vec) const
{
return !operator<(vec);
}
template<typename T>
Vector3<T> Vector3<T>::CrossProduct(const Vector3& vec1, const Vector3& vec2)
{
return vec1.CrossProduct(vec2);
}
template<typename T>
T Vector3<T>::DotProduct(const Vector3& vec1, const Vector3& vec2)
{
return vec1.DotProduct(vec2);
}
template<typename T>
Vector3<T> Vector3<T>::Backward()
{
Vector3 vector;
vector.MakeBackward();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Down()
{
Vector3 vector;
vector.MakeDown();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Forward()
{
Vector3 vector;
vector.MakeForward();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Left()
{
Vector3 vector;
vector.MakeLeft();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Lerp(const Vector3& from, const Vector3& to, T interpolation)
{
return Nz::Lerp(from, to, interpolation);
}
template<typename T>
Vector3<T> Vector3<T>::Normalize(const Vector3& vec)
{
return vec.GetNormal();
}
template<typename T>
Vector3<T> Vector3<T>::Right()
{
Vector3 vector;
vector.MakeRight();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Unit()
{
Vector3 vector;
vector.MakeUnit();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::UnitX()
{
Vector3 vector;
vector.MakeUnitX();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::UnitY()
{
Vector3 vector;
vector.MakeUnitY();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::UnitZ()
{
Vector3 vector;
vector.MakeUnitZ();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Up()
{
Vector3 vector;
vector.MakeUp();
return vector;
}
template<typename T>
Vector3<T> Vector3<T>::Zero()
{
Vector3 vector;
vector.MakeZero();
return vector;
}
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Vector3<T>& vec)
{
return out << vec.ToString();
}
template<typename T>
Nz::Vector3<T> operator*(T scale, const Nz::Vector3<T>& vec)
{
return Nz::Vector3<T>(scale * vec.x, scale * vec.y, scale * vec.z);
}
template<typename T>
Nz::Vector3<T> operator/(T scale, const Nz::Vector3<T>& vec)
{
#if NAZARA_MATH_SAFE
if (Nz::NumberEquals(vec.x, F(0.0)) || Nz::NumberEquals(vec.y, F(0.0)) || Nz::NumberEquals(vec.z, F(0.0)))
{
Nz::String error("Division by zero");
NazaraError(error);
throw std::domain_error(error);
}
#endif
return Nz::Vector3<T>(scale / vec.x, scale / vec.y, scale / vec.z);
}
#undef F
#include <Nazara/Core/DebugOff.hpp>