NazaraEngine/src/Nazara/Renderer/Renderer.cpp

1938 lines
47 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Renderer module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Core/CallOnExit.hpp>
#include <Nazara/Core/Color.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Core/Log.hpp>
#include <Nazara/Core/Signal.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Context.hpp>
#include <Nazara/Renderer/DebugDrawer.hpp>
#include <Nazara/Renderer/HardwareBuffer.hpp>
#include <Nazara/Renderer/OpenGL.hpp>
#include <Nazara/Renderer/RenderBuffer.hpp>
#include <Nazara/Renderer/RenderTarget.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/Texture.hpp>
#include <Nazara/Renderer/UberShader.hpp>
#include <Nazara/Utility/AbstractBuffer.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/Utility.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <Nazara/Utility/VertexDeclaration.hpp>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <Nazara/Renderer/Debug.hpp>
///TODO: Manager les VAO (permettre plusieurs draw calls sans rebinder le VAO)
namespace Nz
{
namespace
{
const UInt8 r_coreFragmentShader[] = {
#include <Nazara/Renderer/Resources/Shaders/Debug/core.frag.h>
};
const UInt8 r_coreVertexShader[] = {
#include <Nazara/Renderer/Resources/Shaders/Debug/core.vert.h>
};
enum ObjectType
{
ObjectType_Context,
ObjectType_IndexBuffer,
ObjectType_VertexBuffer,
ObjectType_VertexDeclaration
};
enum UpdateFlags
{
Update_None = 0,
Update_Matrices = 0x1,
Update_Shader = 0x2,
Update_Textures = 0x4,
Update_VAO = 0x8
};
struct MatrixUnit
{
Matrix4f matrix;
bool updated;
int location;
};
struct TextureUnit
{
TextureSampler sampler;
const Texture* texture = nullptr;
bool samplerUpdated = false;
};
struct VAO_Entry
{
GLuint vao;
NazaraSlot(IndexBuffer, OnIndexBufferRelease, onIndexBufferReleaseSlot);
NazaraSlot(VertexBuffer, OnVertexBufferRelease, onVertexBufferReleaseSlot);
NazaraSlot(VertexDeclaration, OnVertexDeclarationRelease, onInstancingDeclarationReleaseSlot);
NazaraSlot(VertexDeclaration, OnVertexDeclarationRelease, onVertexDeclarationReleaseSlot);
};
using VAO_Key = std::tuple<const IndexBuffer*, const VertexBuffer*, const VertexDeclaration*, const VertexDeclaration*>;
using VAO_Map = std::map<VAO_Key, VAO_Entry>;
struct Context_Entry
{
VAO_Map vaoMap;
NazaraSlot(Context, OnContextRelease, onReleaseSlot);
};
using Context_Map = std::unordered_map<const Context*, Context_Entry>;
Context_Map s_vaos;
std::vector<unsigned int> s_dirtyTextureUnits;
std::vector<TextureUnit> s_textureUnits;
GLuint s_currentVAO = 0;
VertexBuffer s_instanceBuffer;
VertexBuffer s_fullscreenQuadBuffer;
MatrixUnit s_matrices[MatrixType_Max + 1];
RenderStates s_states;
Vector2ui s_targetSize;
UInt8 s_maxAnisotropyLevel;
UInt32 s_updateFlags;
const IndexBuffer* s_indexBuffer;
const RenderTarget* s_target;
const Shader* s_shader;
const VertexBuffer* s_vertexBuffer;
bool s_capabilities[RendererCap_Max + 1];
bool s_instancing;
unsigned int s_maxColorAttachments;
unsigned int s_maxRenderTarget;
unsigned int s_maxTextureSize;
unsigned int s_maxTextureUnit;
unsigned int s_maxVertexAttribs;
}
void Renderer::BeginCondition(const GpuQuery& query, GpuQueryCondition condition)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glBeginConditionalRender(query.GetOpenGLID(), OpenGL::QueryCondition[condition]);
}
void Renderer::Clear(UInt32 flags)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
if (flags)
{
// On n'oublie pas de mettre à jour la cible
s_target->EnsureTargetUpdated();
// Les états du rendu sont suceptibles d'influencer glClear
OpenGL::ApplyStates(s_states);
GLenum mask = 0;
if (flags & RendererBuffer_Color)
mask |= GL_COLOR_BUFFER_BIT;
if (flags & RendererBuffer_Depth)
mask |= GL_DEPTH_BUFFER_BIT;
if (flags & RendererBuffer_Stencil)
mask |= GL_STENCIL_BUFFER_BIT;
glClear(mask);
}
}
void Renderer::DrawFullscreenQuad()
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
EnableInstancing(false);
SetIndexBuffer(nullptr);
SetVertexBuffer(&s_fullscreenQuadBuffer);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states: " + Error::GetLastError());
return;
}
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
void Renderer::DrawIndexedPrimitives(PrimitiveMode mode, unsigned int firstIndex, unsigned int indexCount)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > PrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_indexBuffer)
{
NazaraError("No index buffer");
return;
}
#endif
EnableInstancing(false);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states: " + Error::GetLastError());
return;
}
GLenum type;
UInt8* offset = reinterpret_cast<UInt8*>(s_indexBuffer->GetStartOffset());
if (s_indexBuffer->HasLargeIndices())
{
offset += firstIndex*sizeof(UInt32);
type = GL_UNSIGNED_INT;
}
else
{
offset += firstIndex*sizeof(UInt16);
type = GL_UNSIGNED_SHORT;
}
glDrawElements(OpenGL::PrimitiveMode[mode], indexCount, type, offset);
glBindVertexArray(0);
}
void Renderer::DrawIndexedPrimitivesInstanced(unsigned int instanceCount, PrimitiveMode mode, unsigned int firstIndex, unsigned int indexCount)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > PrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_indexBuffer)
{
NazaraError("No index buffer");
return;
}
if (instanceCount == 0)
{
NazaraError("Instance count must be over zero");
return;
}
unsigned int maxInstanceCount = s_instanceBuffer.GetVertexCount();
if (instanceCount > maxInstanceCount)
{
NazaraError("Instance count is over maximum instance count (" + String::Number(instanceCount) + " >= " NazaraStringifyMacro(NAZARA_RENDERER_MAX_INSTANCES) ")");
return;
}
#endif
EnableInstancing(true);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states: " + Error::GetLastError());
return;
}
GLenum type;
UInt8* offset = reinterpret_cast<UInt8*>(s_indexBuffer->GetStartOffset());
if (s_indexBuffer->HasLargeIndices())
{
offset += firstIndex*sizeof(UInt32);
type = GL_UNSIGNED_INT;
}
else
{
offset += firstIndex*sizeof(UInt16);
type = GL_UNSIGNED_SHORT;
}
glDrawElementsInstanced(OpenGL::PrimitiveMode[mode], indexCount, type, offset, instanceCount);
glBindVertexArray(0);
}
void Renderer::DrawPrimitives(PrimitiveMode mode, unsigned int firstVertex, unsigned int vertexCount)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > PrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
EnableInstancing(false);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states: " + Error::GetLastError());
return;
}
glDrawArrays(OpenGL::PrimitiveMode[mode], firstVertex, vertexCount);
glBindVertexArray(0);
}
void Renderer::DrawPrimitivesInstanced(unsigned int instanceCount, PrimitiveMode mode, unsigned int firstVertex, unsigned int vertexCount)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (mode > PrimitiveMode_Max)
{
NazaraError("Primitive mode out of enum");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (instanceCount == 0)
{
NazaraError("Instance count must be over zero");
return;
}
unsigned int maxInstanceCount = s_instanceBuffer.GetVertexCount();
if (instanceCount > maxInstanceCount)
{
NazaraError("Instance count is over maximum instance count (" + String::Number(instanceCount) + " >= " NazaraStringifyMacro(NAZARA_RENDERER_MAX_INSTANCES) ")");
return;
}
#endif
EnableInstancing(true);
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states: " + Error::GetLastError());
return;
}
glDrawArraysInstanced(OpenGL::PrimitiveMode[mode], firstVertex, vertexCount, instanceCount);
glBindVertexArray(0);
}
void Renderer::Enable(RendererParameter parameter, bool enable)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
if (parameter > RendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return;
}
#endif
s_states.parameters[parameter] = enable;
}
void Renderer::EndCondition()
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glEndConditionalRender();
}
void Renderer::Flush()
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glFlush();
}
RendererComparison Renderer::GetDepthFunc()
{
return s_states.depthFunc;
}
VertexBuffer* Renderer::GetInstanceBuffer()
{
s_updateFlags |= Update_VAO;
return &s_instanceBuffer;
}
float Renderer::GetLineWidth()
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return 0.f;
}
#endif
return s_states.lineWidth;
}
Matrix4f Renderer::GetMatrix(MatrixType type)
{
#ifdef NAZARA_DEBUG
if (type > MatrixType_Max)
{
NazaraError("Matrix type out of enum");
return Matrix4f();
}
#endif
if (!s_matrices[type].updated)
UpdateMatrix(type);
return s_matrices[type].matrix;
}
UInt8 Renderer::GetMaxAnisotropyLevel()
{
return s_maxAnisotropyLevel;
}
unsigned int Renderer::GetMaxColorAttachments()
{
return s_maxColorAttachments;
}
unsigned int Renderer::GetMaxRenderTargets()
{
return s_maxRenderTarget;
}
unsigned int Renderer::GetMaxTextureSize()
{
return s_maxTextureSize;
}
unsigned int Renderer::GetMaxTextureUnits()
{
return s_maxTextureUnit;
}
unsigned int Renderer::GetMaxVertexAttribs()
{
return s_maxVertexAttribs;
}
float Renderer::GetPointSize()
{
return s_states.pointSize;
}
const RenderStates& Renderer::GetRenderStates()
{
return s_states;
}
Recti Renderer::GetScissorRect()
{
return OpenGL::GetCurrentScissorBox();
}
const Shader* Renderer::GetShader()
{
return s_shader;
}
const RenderTarget* Renderer::GetTarget()
{
return s_target;
}
Recti Renderer::GetViewport()
{
return OpenGL::GetCurrentViewport();
}
bool Renderer::HasCapability(RendererCap capability)
{
#ifdef NAZARA_DEBUG
if (capability > RendererCap_Max)
{
NazaraError("Renderer capability out of enum");
return false;
}
#endif
return s_capabilities[capability];
}
bool Renderer::Initialize()
{
if (s_moduleReferenceCounter > 0)
{
s_moduleReferenceCounter++;
return true; // Déjà initialisé
}
// Initialisation des dépendances
if (!Utility::Initialize())
{
NazaraError("Failed to initialize Utility module");
return false;
}
s_moduleReferenceCounter++;
// Initialisation du module
CallOnExit onExit(Renderer::Uninitialize);
// Initialisation d'OpenGL
if (!OpenGL::Initialize()) // Initialise également Context
{
NazaraError("Failed to initialize OpenGL");
return false;
}
Buffer::SetBufferFactory(DataStorage_Hardware, [] (Buffer* parent, BufferType type) -> AbstractBuffer*
{
return new HardwareBuffer(parent, type);
});
for (unsigned int i = 0; i <= MatrixType_Max; ++i)
{
MatrixUnit& unit = s_matrices[i];
unit.location = -1;
unit.matrix.MakeIdentity();
unit.updated = true;
}
// Récupération des capacités d'OpenGL
s_capabilities[RendererCap_AnisotropicFilter] = OpenGL::IsSupported(OpenGLExtension_AnisotropicFilter);
s_capabilities[RendererCap_FP64] = OpenGL::IsSupported(OpenGLExtension_FP64);
s_capabilities[RendererCap_Instancing] = true; // Supporté par OpenGL 3.3
Context::EnsureContext();
if (s_capabilities[RendererCap_AnisotropicFilter])
{
GLfloat maxAnisotropy;
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropy);
s_maxAnisotropyLevel = static_cast<UInt8>(maxAnisotropy);
}
else
s_maxAnisotropyLevel = 1;
GLint maxColorAttachments;
glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS, &maxColorAttachments);
s_maxColorAttachments = static_cast<unsigned int>(maxColorAttachments);
GLint maxDrawBuffers;
glGetIntegerv(GL_MAX_DRAW_BUFFERS, &maxDrawBuffers);
s_maxRenderTarget = static_cast<unsigned int>(maxDrawBuffers);
GLint maxTextureUnits;
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
s_maxTextureUnit = static_cast<unsigned int>(maxTextureUnits);
GLint maxTextureSize;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);
s_maxTextureSize = static_cast<unsigned int>(maxTextureSize);
GLint maxVertexAttribs;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
s_maxVertexAttribs = static_cast<unsigned int>(maxVertexAttribs);
s_states = RenderStates();
s_indexBuffer = nullptr;
s_shader = nullptr;
s_target = nullptr;
s_targetSize.Set(0U);
s_textureUnits.resize(s_maxTextureUnit);
s_updateFlags = Update_Matrices | Update_Shader | Update_VAO;
s_vertexBuffer = nullptr;
s_fullscreenQuadBuffer.Reset(VertexDeclaration::Get(VertexLayout_XY), 4, DataStorage_Hardware, BufferUsage_Static);
float vertices[4 * 2] =
{
-1.f, -1.f,
1.f, -1.f,
-1.f, 1.f,
1.f, 1.f,
};
if (!s_fullscreenQuadBuffer.Fill(vertices, 0, 4))
{
NazaraError("Failed to fill fullscreen quad buffer");
return false;
}
if (s_capabilities[RendererCap_Instancing])
{
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException, true);
s_instanceBuffer.Reset(nullptr, NAZARA_RENDERER_INSTANCE_BUFFER_SIZE, DataStorage_Hardware, BufferUsage_Dynamic);
}
catch (const std::exception& e)
{
s_capabilities[RendererCap_Instancing] = false;
ErrorFlags flags(ErrorFlag_ThrowExceptionDisabled);
NazaraError("Failed to create instancing buffer: " + String(e.what()));
}
}
if (!RenderBuffer::Initialize())
{
NazaraError("Failed to initialize render buffers");
return false;
}
if (!Shader::Initialize())
{
NazaraError("Failed to initialize shaders");
return false;
}
if (!Texture::Initialize())
{
NazaraError("Failed to initialize textures");
return false;
}
if (!TextureSampler::Initialize())
{
NazaraError("Failed to initialize texture samplers");
return false;
}
if (!UberShader::Initialize())
{
NazaraError("Failed to initialize uber shaders");
return false;
}
// Création du shader de Debug
ShaderRef debugShader = Shader::New();
if (!debugShader->Create())
{
NazaraError("Failed to create debug shader");
return false;
}
if (!debugShader->AttachStageFromSource(ShaderStageType_Fragment, reinterpret_cast<const char*>(r_coreFragmentShader), sizeof(r_coreFragmentShader)))
{
NazaraError("Failed to attach fragment stage");
return false;
}
if (!debugShader->AttachStageFromSource(ShaderStageType_Vertex, reinterpret_cast<const char*>(r_coreVertexShader), sizeof(r_coreVertexShader)))
{
NazaraError("Failed to attach vertex stage");
return false;
}
if (!debugShader->Link())
{
NazaraError("Failed to link shader");
return false;
}
ShaderLibrary::Register("DebugSimple", debugShader);
onExit.Reset();
NazaraNotice("Initialized: Renderer module");
return true;
}
bool Renderer::IsComponentTypeSupported(ComponentType type)
{
switch (type)
{
case ComponentType_Color:
case ComponentType_Float1:
case ComponentType_Float2:
case ComponentType_Float3:
case ComponentType_Float4:
return true; // Supportés nativement
case ComponentType_Double1:
case ComponentType_Double2:
case ComponentType_Double3:
case ComponentType_Double4:
return glVertexAttribLPointer != nullptr; // Fonction requise pour envoyer des doubles
case ComponentType_Int1:
case ComponentType_Int2:
case ComponentType_Int3:
case ComponentType_Int4:
return glVertexAttribIPointer != nullptr; // Fonction requise pour envoyer des entiers
case ComponentType_Quaternion:
return false;
}
NazaraError("Attribute type not handled (0x" + String::Number(type, 16) + ')');
return false;
}
bool Renderer::IsEnabled(RendererParameter parameter)
{
#ifdef NAZARA_DEBUG
if (parameter > RendererParameter_Max)
{
NazaraError("Renderer parameter out of enum");
return false;
}
#endif
return s_states.parameters[parameter];
}
bool Renderer::IsInitialized()
{
return s_moduleReferenceCounter != 0;
}
void Renderer::SetBlendFunc(BlendFunc srcBlend, BlendFunc dstBlend)
{
#ifdef NAZARA_DEBUG
if (srcBlend > BlendFunc_Max)
{
NazaraError("Blend func out of enum");
return;
}
if (dstBlend > BlendFunc_Max)
{
NazaraError("Blend func out of enum");
return;
}
#endif
s_states.srcBlend = srcBlend;
s_states.dstBlend = dstBlend;
}
void Renderer::SetClearColor(const Color& color)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f);
}
void Renderer::SetClearColor(UInt8 r, UInt8 g, UInt8 b, UInt8 a)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(r / 255.f, g / 255.f, b / 255.f, a / 255.f);
}
void Renderer::SetClearDepth(double depth)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearDepth(depth);
}
void Renderer::SetClearStencil(unsigned int value)
{
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearStencil(value);
}
void Renderer::SetDepthFunc(RendererComparison compareFunc)
{
#ifdef NAZARA_DEBUG
if (compareFunc > RendererComparison_Max)
{
NazaraError("Renderer comparison out of enum");
return;
}
#endif
s_states.depthFunc = compareFunc;
}
void Renderer::SetFaceCulling(FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
s_states.faceCulling = faceSide;
}
void Renderer::SetFaceFilling(FaceFilling fillingMode)
{
#ifdef NAZARA_DEBUG
if (fillingMode > FaceFilling_Max)
{
NazaraError("Face filling out of enum");
return;
}
#endif
s_states.faceFilling = fillingMode;
}
void Renderer::SetIndexBuffer(const IndexBuffer* indexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (indexBuffer && !indexBuffer->IsHardware())
{
NazaraError("Buffer must be hardware");
return;
}
#endif
if (s_indexBuffer != indexBuffer)
{
s_indexBuffer = indexBuffer;
s_updateFlags |= Update_VAO;
}
}
void Renderer::SetLineWidth(float width)
{
#if NAZARA_RENDERER_SAFE
if (width <= 0.f)
{
NazaraError("Width must be over zero");
return;
}
#endif
s_states.lineWidth = width;
}
void Renderer::SetMatrix(MatrixType type, const Matrix4f& matrix)
{
#ifdef NAZARA_DEBUG
if (type > MatrixType_Max)
{
NazaraError("Matrix type out of enum");
return;
}
#endif
s_matrices[type].matrix = matrix;
s_matrices[type].updated = true;
// Invalidation des combinaisons
switch (type)
{
// Matrices de base
case MatrixType_Projection:
s_matrices[MatrixType_InvProjection].updated = false;
s_matrices[MatrixType_InvViewProj].updated = false;
s_matrices[MatrixType_InvWorldViewProj].updated = false;
s_matrices[MatrixType_ViewProj].updated = false;
s_matrices[MatrixType_WorldViewProj].updated = false;
break;
case MatrixType_View:
s_matrices[MatrixType_InvView].updated = false;
s_matrices[MatrixType_InvViewProj].updated = false;
s_matrices[MatrixType_InvWorld].updated = false;
s_matrices[MatrixType_InvWorldViewProj].updated = false;
s_matrices[MatrixType_ViewProj].updated = false;
s_matrices[MatrixType_World].updated = false;
s_matrices[MatrixType_WorldViewProj].updated = false;
break;
case MatrixType_World:
s_matrices[MatrixType_InvWorld].updated = false;
s_matrices[MatrixType_InvWorldView].updated = false;
s_matrices[MatrixType_InvWorldViewProj].updated = false;
s_matrices[MatrixType_WorldView].updated = false;
s_matrices[MatrixType_WorldViewProj].updated = false;
break;
// Matrices combinées
case MatrixType_ViewProj:
s_matrices[MatrixType_InvViewProj].updated = false;
break;
case MatrixType_WorldView:
s_matrices[MatrixType_InvWorldView].updated = false;
s_matrices[MatrixType_WorldViewProj].updated = false;
break;
case MatrixType_WorldViewProj:
s_matrices[MatrixType_InvWorldViewProj].updated = false;
break;
case MatrixType_InvProjection:
case MatrixType_InvView:
case MatrixType_InvViewProj:
case MatrixType_InvWorld:
case MatrixType_InvWorldView:
case MatrixType_InvWorldViewProj:
break;
}
s_updateFlags |= Update_Matrices;
}
void Renderer::SetPointSize(float size)
{
#if NAZARA_RENDERER_SAFE
if (size <= 0.f)
{
NazaraError("Size must be over zero");
return;
}
#endif
s_states.pointSize = size;
}
void Renderer::SetRenderStates(const RenderStates& states)
{
s_states = states;
}
void Renderer::SetScissorRect(const Recti& rect)
{
OpenGL::BindScissorBox(rect);
}
void Renderer::SetShader(const Shader* shader)
{
#if NAZARA_RENDERER_SAFE
if (shader)
{
if (!shader->IsValid() || !shader->IsLinked())
{
NazaraError("Invalid shader");
return;
}
}
#endif
if (s_shader != shader)
{
s_shader = shader;
s_updateFlags |= Update_Shader;
}
}
void Renderer::SetStencilCompareFunction(RendererComparison compareFunc, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (compareFunc > RendererComparison_Max)
{
NazaraError("Renderer comparison out of enum");
return;
}
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilCompare = compareFunc;
break;
case FaceSide_Front:
s_states.frontFace.stencilCompare = compareFunc;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilCompare = compareFunc;
s_states.frontFace.stencilCompare = compareFunc;
break;
}
}
void Renderer::SetStencilFailOperation(StencilOperation failOperation, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (failOperation > StencilOperation_Max)
{
NazaraError("Stencil fail operation out of enum");
return;
}
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilFail = failOperation;
break;
case FaceSide_Front:
s_states.frontFace.stencilFail = failOperation;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilFail = failOperation;
s_states.frontFace.stencilFail = failOperation;
break;
}
}
void Renderer::SetStencilMask(UInt32 mask, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilMask = mask;
break;
case FaceSide_Front:
s_states.frontFace.stencilMask = mask;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilMask = mask;
s_states.frontFace.stencilMask = mask;
break;
}
}
void Renderer::SetStencilPassOperation(StencilOperation passOperation, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (passOperation > StencilOperation_Max)
{
NazaraError("Stencil pass operation out of enum");
return;
}
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilPass = passOperation;
break;
case FaceSide_Front:
s_states.frontFace.stencilPass = passOperation;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilPass = passOperation;
s_states.frontFace.stencilPass = passOperation;
break;
}
}
void Renderer::SetStencilReferenceValue(unsigned int refValue, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilReference = refValue;
break;
case FaceSide_Front:
s_states.frontFace.stencilReference = refValue;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilReference = refValue;
s_states.frontFace.stencilReference = refValue;
break;
}
}
void Renderer::SetStencilZFailOperation(StencilOperation zfailOperation, FaceSide faceSide)
{
#ifdef NAZARA_DEBUG
if (zfailOperation > StencilOperation_Max)
{
NazaraError("Stencil pass operation out of enum");
return;
}
if (faceSide > FaceSide_Max)
{
NazaraError("Face side out of enum");
return;
}
#endif
switch (faceSide)
{
case FaceSide_Back:
s_states.backFace.stencilZFail = zfailOperation;
break;
case FaceSide_Front:
s_states.frontFace.stencilZFail = zfailOperation;
break;
case FaceSide_FrontAndBack:
s_states.backFace.stencilZFail = zfailOperation;
s_states.frontFace.stencilZFail = zfailOperation;
break;
}
}
bool Renderer::SetTarget(const RenderTarget* target)
{
if (s_target == target)
return true;
if (s_target)
{
if (!s_target->HasContext())
s_target->Desactivate();
s_target = nullptr;
}
if (target)
{
#if NAZARA_RENDERER_SAFE
if (!target->IsRenderable())
{
NazaraError("Target not renderable");
return false;
}
#endif
if (!target->Activate())
{
NazaraError("Failed to activate target");
return false;
}
s_target = target;
}
OpenGL::SetTarget(s_target);
return true;
}
void Renderer::SetTexture(UInt8 unit, const Texture* texture)
{
#if NAZARA_RENDERER_SAFE
if (unit >= s_maxTextureUnit)
{
NazaraError("Texture unit out of range (" + String::Number(unit) + " >= " + String::Number(s_maxTextureUnit) + ')');
return;
}
#endif
if (s_textureUnits[unit].texture != texture)
{
s_textureUnits[unit].texture = texture;
if (texture)
{
if (s_textureUnits[unit].sampler.UseMipmaps(texture->HasMipmaps()))
s_textureUnits[unit].samplerUpdated = false;
}
s_dirtyTextureUnits.push_back(unit);
s_updateFlags |= Update_Textures;
}
}
void Renderer::SetTextureSampler(UInt8 unit, const TextureSampler& sampler)
{
#if NAZARA_RENDERER_SAFE
if (unit >= s_maxTextureUnit)
{
NazaraError("Texture unit out of range (" + String::Number(unit) + " >= " + String::Number(s_maxTextureUnit) + ')');
return;
}
#endif
s_textureUnits[unit].sampler = sampler;
s_textureUnits[unit].samplerUpdated = false;
if (s_textureUnits[unit].texture)
s_textureUnits[unit].sampler.UseMipmaps(s_textureUnits[unit].texture->HasMipmaps());
s_dirtyTextureUnits.push_back(unit);
s_updateFlags |= Update_Textures;
}
void Renderer::SetVertexBuffer(const VertexBuffer* vertexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (vertexBuffer && !vertexBuffer->IsHardware())
{
NazaraError("Buffer must be hardware");
return;
}
#endif
if (vertexBuffer && s_vertexBuffer != vertexBuffer)
{
s_vertexBuffer = vertexBuffer;
s_updateFlags |= Update_VAO;
}
}
void Renderer::SetViewport(const Recti& viewport)
{
OpenGL::BindViewport(viewport);
}
void Renderer::Uninitialize()
{
if (s_moduleReferenceCounter != 1)
{
// Le module est soit encore utilisé, soit pas initialisé
if (s_moduleReferenceCounter > 1)
s_moduleReferenceCounter--;
return;
}
// Libération du module
s_moduleReferenceCounter = 0;
ShaderLibrary::Unregister("DebugSimple");
UberShader::Uninitialize();
TextureSampler::Uninitialize();
Texture::Uninitialize();
Shader::Uninitialize();
RenderBuffer::Uninitialize();
DebugDrawer::Uninitialize();
s_textureUnits.clear();
// Libération des buffers
s_fullscreenQuadBuffer.Reset();
s_instanceBuffer.Reset();
// Libération des VAOs
for (auto& pair : s_vaos)
{
const Context* context = pair.first;
const Context_Entry& contextEntry = pair.second;
for (auto& pair2 : contextEntry.vaoMap)
{
const VAO_Entry& entry = pair2.second;
OpenGL::DeleteVertexArray(context, entry.vao);
}
}
s_vaos.clear();
OpenGL::Uninitialize();
NazaraNotice("Uninitialized: Renderer module");
// Libération des dépendances
Utility::Uninitialize();
}
void Renderer::EnableInstancing(bool instancing)
{
if (s_instancing != instancing)
{
s_updateFlags |= Update_VAO;
s_instancing = instancing;
}
}
bool Renderer::EnsureStateUpdate()
{
// Toutes les erreurs sont silencieuses car l'erreur est gérée par la fonction appelante
ErrorFlags flags(ErrorFlag_Silent | ErrorFlag_ThrowExceptionDisabled);
#ifdef NAZARA_DEBUG
if (Context::GetCurrent() == nullptr)
{
NazaraError("No active context");
return false;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_shader)
{
NazaraError("No shader");
return false;
}
if (!s_target)
{
NazaraError("No target");
return false;
}
#endif
s_target->EnsureTargetUpdated();
s_shader->Bind(); // Active le programme si ce n'est pas déjà le cas
// Si le programme a été changé depuis la dernière fois
if (s_updateFlags & Update_Shader)
{
// Récupération des indices des variables uniformes (-1 si la variable n'existe pas)
s_matrices[MatrixType_Projection].location = s_shader->GetUniformLocation(ShaderUniform_ProjMatrix);
s_matrices[MatrixType_View].location = s_shader->GetUniformLocation(ShaderUniform_ViewMatrix);
s_matrices[MatrixType_World].location = s_shader->GetUniformLocation(ShaderUniform_WorldMatrix);
s_matrices[MatrixType_ViewProj].location = s_shader->GetUniformLocation(ShaderUniform_ViewProjMatrix);
s_matrices[MatrixType_WorldView].location = s_shader->GetUniformLocation(ShaderUniform_WorldViewMatrix);
s_matrices[MatrixType_WorldViewProj].location = s_shader->GetUniformLocation(ShaderUniform_WorldViewProjMatrix);
s_matrices[MatrixType_InvProjection].location = s_shader->GetUniformLocation(ShaderUniform_InvProjMatrix);
s_matrices[MatrixType_InvView].location = s_shader->GetUniformLocation(ShaderUniform_InvViewMatrix);
s_matrices[MatrixType_InvViewProj].location = s_shader->GetUniformLocation(ShaderUniform_InvViewProjMatrix);
s_matrices[MatrixType_InvWorld].location = s_shader->GetUniformLocation(ShaderUniform_InvWorldMatrix);
s_matrices[MatrixType_InvWorldView].location = s_shader->GetUniformLocation(ShaderUniform_InvWorldViewMatrix);
s_matrices[MatrixType_InvWorldViewProj].location = s_shader->GetUniformLocation(ShaderUniform_InvWorldViewProjMatrix);
s_targetSize.Set(0U); // On force l'envoi des uniformes
s_updateFlags |= Update_Matrices; // Changement de programme, on renvoie toutes les matrices demandées
s_updateFlags &= ~Update_Shader;
}
// Envoi des uniformes liées au Renderer
Vector2ui targetSize(s_target->GetWidth(), s_target->GetHeight());
if (s_targetSize != targetSize)
{
int location;
location = s_shader->GetUniformLocation(ShaderUniform_InvTargetSize);
if (location != -1)
s_shader->SendVector(location, 1.f / Vector2f(targetSize));
location = s_shader->GetUniformLocation(ShaderUniform_TargetSize);
if (location != -1)
s_shader->SendVector(location, Vector2f(targetSize));
s_targetSize.Set(targetSize);
}
if (s_updateFlags != Update_None)
{
if (s_updateFlags & Update_Textures)
{
for (unsigned int i : s_dirtyTextureUnits)
{
TextureUnit& unit = s_textureUnits[i];
if (unit.texture && !unit.samplerUpdated)
{
unit.sampler.Bind(i);
unit.samplerUpdated = true;
}
}
s_dirtyTextureUnits.clear(); // Ne change pas la capacité
s_updateFlags &= ~Update_Textures;
}
if (s_updateFlags & Update_Matrices)
{
for (unsigned int i = 0; i <= MatrixType_Max; ++i)
{
MatrixUnit& unit = s_matrices[i];
if (unit.location != -1) // On ne traite que les matrices existant dans le programme
{
if (!unit.updated)
UpdateMatrix(static_cast<MatrixType>(i));
s_shader->SendMatrix(unit.location, unit.matrix);
}
}
s_updateFlags &= ~Update_Matrices;
}
if (s_updateFlags & Update_VAO)
{
#if NAZARA_RENDERER_SAFE
if (!s_vertexBuffer)
{
NazaraError("No vertex buffer");
return false;
}
#endif
// Note: Les VAOs ne sont pas partagés entre les contextes, nous avons donc un tableau de VAOs par contexte
const Context* context = Context::GetCurrent();
auto it = s_vaos.find(context);
if (it == s_vaos.end())
{
Context_Entry entry;
entry.onReleaseSlot.Connect(context->OnContextRelease, OnContextRelease);
it = s_vaos.insert(std::make_pair(context, std::move(entry))).first;
}
VAO_Map& vaoMap = it->second.vaoMap;
// Notre clé est composée de ce qui définit un VAO
const VertexDeclaration* vertexDeclaration = s_vertexBuffer->GetVertexDeclaration();
const VertexDeclaration* instancingDeclaration = (s_instancing) ? s_instanceBuffer.GetVertexDeclaration() : nullptr;
VAO_Key key(s_indexBuffer, s_vertexBuffer, vertexDeclaration, instancingDeclaration);
// On recherche un VAO existant avec notre configuration
auto vaoIt = vaoMap.find(key);
if (vaoIt == vaoMap.end())
{
// On créé notre VAO
glGenVertexArrays(1, &s_currentVAO);
glBindVertexArray(s_currentVAO);
// On l'ajoute à notre liste
VAO_Entry entry;
entry.vao = s_currentVAO;
// Connect the slots
if (s_indexBuffer)
entry.onIndexBufferReleaseSlot.Connect(s_indexBuffer->OnIndexBufferRelease, OnIndexBufferRelease);
if (instancingDeclaration)
entry.onInstancingDeclarationReleaseSlot.Connect(instancingDeclaration->OnVertexDeclarationRelease, OnVertexDeclarationRelease);
entry.onVertexBufferReleaseSlot.Connect(s_vertexBuffer->OnVertexBufferRelease, OnVertexBufferRelease);
entry.onVertexDeclarationReleaseSlot.Connect(vertexDeclaration->OnVertexDeclarationRelease, OnVertexDeclarationRelease);
vaoIt = vaoMap.insert(std::make_pair(key, std::move(entry))).first;
// And begin to program it
bool updateFailed = false;
// Pour éviter la duplication de code, on va utiliser une astuce via une boucle for
for (unsigned int i = 0; i < (s_instancing ? 2U : 1U); ++i)
{
// Selon l'itération nous choisissons un buffer différent
const VertexBuffer* vertexBuffer = (i == 0) ? s_vertexBuffer : &s_instanceBuffer;
HardwareBuffer* vertexBufferImpl = static_cast<HardwareBuffer*>(vertexBuffer->GetBuffer()->GetImpl());
glBindBuffer(OpenGL::BufferTarget[BufferType_Vertex], vertexBufferImpl->GetOpenGLID());
unsigned int bufferOffset = vertexBuffer->GetStartOffset();
vertexDeclaration = vertexBuffer->GetVertexDeclaration();
unsigned int stride = vertexDeclaration->GetStride();
// On définit les bornes (une fois de plus selon l'itération)
unsigned int start = (i == 0) ? VertexComponent_FirstVertexData : VertexComponent_FirstInstanceData;
unsigned int end = (i == 0) ? VertexComponent_LastVertexData : VertexComponent_LastInstanceData;
for (unsigned int j = start; j <= end; ++j)
{
ComponentType type;
bool enabled;
unsigned int offset;
vertexDeclaration->GetComponent(static_cast<VertexComponent>(j), &enabled, &type, &offset);
if (enabled)
{
if (!IsComponentTypeSupported(type))
{
NazaraError("Invalid vertex declaration " + String::Pointer(vertexDeclaration) + ": Vertex component 0x" + String::Number(j, 16) + " (type: 0x" + String::Number(type, 16) + ") is not supported");
updateFailed = true;
break;
}
glEnableVertexAttribArray(OpenGL::VertexComponentIndex[j]);
switch (type)
{
case ComponentType_Color:
{
glVertexAttribPointer(OpenGL::VertexComponentIndex[j],
Utility::ComponentCount[type],
OpenGL::ComponentType[type],
GL_TRUE,
stride,
reinterpret_cast<void*>(bufferOffset + offset));
break;
}
case ComponentType_Double1:
case ComponentType_Double2:
case ComponentType_Double3:
case ComponentType_Double4:
{
glVertexAttribLPointer(OpenGL::VertexComponentIndex[j],
Utility::ComponentCount[type],
OpenGL::ComponentType[type],
stride,
reinterpret_cast<void*>(bufferOffset + offset));
break;
}
case ComponentType_Float1:
case ComponentType_Float2:
case ComponentType_Float3:
case ComponentType_Float4:
{
glVertexAttribPointer(OpenGL::VertexComponentIndex[j],
Utility::ComponentCount[type],
OpenGL::ComponentType[type],
GL_FALSE,
stride,
reinterpret_cast<void*>(bufferOffset + offset));
break;
}
case ComponentType_Int1:
case ComponentType_Int2:
case ComponentType_Int3:
case ComponentType_Int4:
{
glVertexAttribIPointer(OpenGL::VertexComponentIndex[j],
Utility::ComponentCount[type],
OpenGL::ComponentType[type],
stride,
reinterpret_cast<void*>(bufferOffset + offset));
break;
}
default:
{
NazaraInternalError("Unsupported component type (0x" + String::Number(type, 16) + ')');
break;
}
}
// Les attributs d'instancing ont un diviseur spécifique (pour dépendre de l'instance en cours)
if (i == 1)
glVertexAttribDivisor(OpenGL::VertexComponentIndex[j], 1);
}
else
glDisableVertexAttribArray(OpenGL::VertexComponentIndex[j]);
}
}
if (!s_instancing)
{
// Je ne sais pas si c'est vraiment nécessaire de désactiver les attributs, sur mon ordinateur ça ne pose aucun problème
// mais dans le doute, je laisse ça comme ça.
for (unsigned int i = VertexComponent_FirstInstanceData; i <= VertexComponent_LastInstanceData; ++i)
glDisableVertexAttribArray(OpenGL::VertexComponentIndex[i]);
}
// Et on active l'index buffer (Un seul index buffer par VAO)
if (s_indexBuffer)
{
HardwareBuffer* indexBufferImpl = static_cast<HardwareBuffer*>(s_indexBuffer->GetBuffer()->GetImpl());
glBindBuffer(OpenGL::BufferTarget[BufferType_Index], indexBufferImpl->GetOpenGLID());
}
else
glBindBuffer(OpenGL::BufferTarget[BufferType_Index], 0);
// On invalide les bindings des buffers (car nous les avons défini manuellement)
OpenGL::SetBuffer(BufferType_Index, 0);
OpenGL::SetBuffer(BufferType_Vertex, 0);
if (updateFailed)
{
// La création de notre VAO a échoué, libérons-le et marquons-le comme problématique
glDeleteVertexArrays(1, &vaoIt->second.vao);
vaoIt->second.vao = 0;
s_currentVAO = 0;
}
else
glBindVertexArray(0); // On marque la fin de la construction du VAO en le débindant
}
else
// Notre VAO existe déjà, il est donc inutile de le reprogrammer
s_currentVAO = vaoIt->second.vao;
// En cas de non-support des VAOs, les attributs doivent être respécifiés à chaque frame
s_updateFlags &= ~Update_VAO;
}
#ifdef NAZARA_DEBUG
if (s_updateFlags != Update_None && s_updateFlags != Update_VAO)
NazaraWarning("Update flags not fully cleared");
#endif
}
// On bind notre VAO
if (!s_currentVAO)
{
NazaraError("Failed to create VAO");
return false;
}
glBindVertexArray(s_currentVAO);
// On vérifie que les textures actuellement bindées sont bien nos textures
// Ceci à cause du fait qu'il est possible que des opérations sur les textures aient eu lieu
// entre le dernier rendu et maintenant
for (unsigned int i = 0; i < s_maxTextureUnit; ++i)
{
const Texture* texture = s_textureUnits[i].texture;
if (texture)
{
OpenGL::BindTexture(i, texture->GetType(), texture->GetOpenGLID());
texture->EnsureMipmapsUpdate();
}
}
// Et on termine par envoyer nos états au driver
OpenGL::ApplyStates(s_states);
return true;
}
void Renderer::OnContextRelease(const Context* context)
{
s_vaos.erase(context);
}
void Renderer::OnIndexBufferRelease(const IndexBuffer* indexBuffer)
{
for (auto& pair : s_vaos)
{
const Context* context = pair.first;
VAO_Map& vaos = pair.second.vaoMap;
auto it = vaos.begin();
while (it != vaos.end())
{
const VAO_Key& key = it->first;
const IndexBuffer* vaoIndexBuffer = std::get<0>(key);
if (vaoIndexBuffer == indexBuffer)
{
// Suppression du VAO:
// Comme celui-ci est local à son contexte de création, sa suppression n'est possible que si
// son contexte d'origine est actif, sinon il faudra le mettre en file d'attente
// Ceci est géré par la méthode OpenGL::DeleteVertexArray
OpenGL::DeleteVertexArray(context, it->second.vao);
vaos.erase(it++);
}
else
++it;
}
}
}
void Renderer::OnShaderReleased(const Shader* shader)
{
if (s_shader == shader)
{
s_shader = nullptr;
s_updateFlags |= Update_Shader;
}
}
void Renderer::OnTextureReleased(const Texture* texture)
{
for (TextureUnit& unit : s_textureUnits)
{
if (unit.texture == texture)
unit.texture = nullptr;
// Inutile de changer le flag pour une texture désactivée
}
}
void Renderer::OnVertexBufferRelease(const VertexBuffer* vertexBuffer)
{
for (auto& pair : s_vaos)
{
const Context* context = pair.first;
VAO_Map& vaos = pair.second.vaoMap;
auto it = vaos.begin();
while (it != vaos.end())
{
const VAO_Key& key = it->first;
const VertexBuffer* vaoVertexBuffer = std::get<1>(key);
if (vaoVertexBuffer == vertexBuffer)
{
// Suppression du VAO:
// Comme celui-ci est local à son contexte de création, sa suppression n'est possible que si
// son contexte d'origine est actif, sinon il faudra le mettre en file d'attente
// Ceci est géré par la méthode OpenGL::DeleteVertexArray
OpenGL::DeleteVertexArray(context, it->second.vao);
vaos.erase(it++);
}
else
++it;
}
}
}
void Renderer::OnVertexDeclarationRelease(const VertexDeclaration* vertexDeclaration)
{
for (auto& pair : s_vaos)
{
const Context* context = pair.first;
VAO_Map& vaos = pair.second.vaoMap;
auto it = vaos.begin();
while (it != vaos.end())
{
const VAO_Key& key = it->first;
const VertexDeclaration* vaoVertexDeclaration = std::get<2>(key);
const VertexDeclaration* vaoInstancingDeclaration = std::get<3>(key);
if (vaoVertexDeclaration == vertexDeclaration || vaoInstancingDeclaration == vertexDeclaration)
{
// Suppression du VAO:
// Comme celui-ci est local à son contexte de création, sa suppression n'est possible que si
// son contexte d'origine est actif, sinon il faudra le mettre en file d'attente
// Ceci est géré par la méthode OpenGL::DeleteVertexArray
OpenGL::DeleteVertexArray(context, it->second.vao);
vaos.erase(it++);
}
else
++it;
}
}
}
void Renderer::UpdateMatrix(MatrixType type)
{
#ifdef NAZARA_DEBUG
if (type > MatrixType_Max)
{
NazaraError("Matrix type out of enum");
return;
}
#endif
switch (type)
{
// Matrices de base
case MatrixType_Projection:
case MatrixType_View:
case MatrixType_World:
s_matrices[type].updated = true;
break;
// Matrices combinées
case MatrixType_ViewProj:
s_matrices[MatrixType_ViewProj].matrix = s_matrices[MatrixType_View].matrix;
s_matrices[MatrixType_ViewProj].matrix.Concatenate(s_matrices[MatrixType_Projection].matrix);
s_matrices[MatrixType_ViewProj].updated = true;
break;
case MatrixType_WorldView:
s_matrices[MatrixType_WorldView].matrix = s_matrices[MatrixType_World].matrix;
s_matrices[MatrixType_WorldView].matrix.ConcatenateAffine(s_matrices[MatrixType_View].matrix);
s_matrices[MatrixType_WorldView].updated = true;
break;
case MatrixType_WorldViewProj:
if (!s_matrices[MatrixType_WorldView].updated)
UpdateMatrix(MatrixType_WorldView);
s_matrices[MatrixType_WorldViewProj].matrix = s_matrices[MatrixType_WorldView].matrix;
s_matrices[MatrixType_WorldViewProj].matrix.Concatenate(s_matrices[MatrixType_Projection].matrix);
s_matrices[MatrixType_WorldViewProj].updated = true;
break;
// Matrices inversées
case MatrixType_InvProjection:
if (!s_matrices[MatrixType_Projection].updated)
UpdateMatrix(MatrixType_Projection);
if (!s_matrices[MatrixType_Projection].matrix.GetInverse(&s_matrices[MatrixType_InvProjection].matrix))
NazaraWarning("Failed to inverse Proj matrix");
s_matrices[MatrixType_InvProjection].updated = true;
break;
case MatrixType_InvView:
if (!s_matrices[MatrixType_View].updated)
UpdateMatrix(MatrixType_View);
if (!s_matrices[MatrixType_View].matrix.GetInverse(&s_matrices[MatrixType_InvView].matrix))
NazaraWarning("Failed to inverse View matrix");
s_matrices[MatrixType_InvView].updated = true;
break;
case MatrixType_InvViewProj:
if (!s_matrices[MatrixType_ViewProj].updated)
UpdateMatrix(MatrixType_ViewProj);
if (!s_matrices[MatrixType_ViewProj].matrix.GetInverse(&s_matrices[MatrixType_InvViewProj].matrix))
NazaraWarning("Failed to inverse ViewProj matrix");
s_matrices[MatrixType_InvViewProj].updated = true;
break;
case MatrixType_InvWorld:
if (!s_matrices[MatrixType_World].updated)
UpdateMatrix(MatrixType_World);
if (!s_matrices[MatrixType_World].matrix.GetInverse(&s_matrices[MatrixType_InvWorld].matrix))
NazaraWarning("Failed to inverse World matrix");
s_matrices[MatrixType_InvWorld].updated = true;
break;
case MatrixType_InvWorldView:
if (!s_matrices[MatrixType_WorldView].updated)
UpdateMatrix(MatrixType_WorldView);
if (!s_matrices[MatrixType_WorldView].matrix.GetInverse(&s_matrices[MatrixType_InvWorldView].matrix))
NazaraWarning("Failed to inverse WorldView matrix");
s_matrices[MatrixType_InvWorldView].updated = true;
break;
case MatrixType_InvWorldViewProj:
if (!s_matrices[MatrixType_WorldViewProj].updated)
UpdateMatrix(MatrixType_WorldViewProj);
if (!s_matrices[MatrixType_WorldViewProj].matrix.GetInverse(&s_matrices[MatrixType_InvWorldViewProj].matrix))
NazaraWarning("Failed to inverse WorldViewProj matrix");
s_matrices[MatrixType_InvWorldViewProj].updated = true;
break;
}
}
unsigned int Renderer::s_moduleReferenceCounter = 0;
}