NazaraEngine/src/Nazara/Physics3D/Collider3D.cpp

444 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (C) 2017 Jérôme Leclercq
// This file is part of the "Nazara Engine - Physics 3D module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics3D/Collider3D.hpp>
#include <Nazara/Physics3D/PhysWorld3D.hpp>
#include <Newton/Newton.h>
#include <memory>
#include <Nazara/Physics3D/Debug.hpp>
namespace Nz
{
namespace
{
Collider3DRef CreateGeomFromPrimitive(const Primitive& primitive)
{
switch (primitive.type)
{
case PrimitiveType_Box:
return BoxCollider3D::New(primitive.box.lengths, primitive.matrix);
case PrimitiveType_Cone:
return ConeCollider3D::New(primitive.cone.length, primitive.cone.radius, primitive.matrix);
case PrimitiveType_Plane:
return BoxCollider3D::New(Vector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
///TODO: PlaneGeom?
case PrimitiveType_Sphere:
return SphereCollider3D::New(primitive.sphere.size, primitive.matrix.GetTranslation());
}
NazaraError("Primitive type not handled (0x" + String::Number(primitive.type, 16) + ')');
return Collider3DRef();
}
}
Collider3D::~Collider3D()
{
for (auto& pair : m_handles)
NewtonDestroyCollision(pair.second);
}
Boxf Collider3D::ComputeAABB(const Vector3f& translation, const Quaternionf& rotation, const Vector3f& scale) const
{
return ComputeAABB(Matrix4f::Transform(translation, rotation), scale);
}
Boxf Collider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f min, max;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonCollisionCalculateAABB(collision, offsetMatrix, min, max);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, min, max);
return Boxf(scale * min, scale * max);
}
void Collider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
float inertiaMatrix[3];
float origin[3];
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
if (inertia)
inertia->Set(inertiaMatrix);
if (center)
center->Set(origin);
}
float Collider3D::ComputeVolume() const
{
float volume;
// Si nous n'avons aucune instance, nous en créons une temporaire
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
volume = NewtonConvexCollisionCalculateVolume(collision);
}
NewtonDestroyCollision(collision);
}
else // Sinon on utilise une instance au hasard (elles sont toutes identiques de toute façon)
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
return volume;
}
NewtonCollision* Collider3D::GetHandle(PhysWorld3D* world) const
{
auto it = m_handles.find(world);
if (it == m_handles.end())
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
return it->second;
}
Collider3DRef Collider3D::Build(const PrimitiveList& list)
{
std::size_t primitiveCount = list.GetSize();
if (primitiveCount > 1)
{
std::vector<Collider3DRef> geoms(primitiveCount);
for (unsigned int i = 0; i < primitiveCount; ++i)
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
return CompoundCollider3D::New(std::move(geoms));
}
else if (primitiveCount > 0)
return CreateGeomFromPrimitive(list.GetPrimitive(0));
else
return NullCollider3D::New();
}
bool Collider3D::Initialize()
{
if (!Collider3DLibrary::Initialize())
{
NazaraError("Failed to initialise library");
return false;
}
return true;
}
void Collider3D::Uninitialize()
{
Collider3DLibrary::Uninitialize();
}
Collider3DLibrary::LibraryMap Collider3D::s_library;
/********************************** BoxCollider3D **********************************/
BoxCollider3D::BoxCollider3D(const Vector3f& lengths, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_lengths(lengths)
{
}
BoxCollider3D::BoxCollider3D(const Vector3f& lengths, const Vector3f& translation, const Quaternionf& rotation) :
BoxCollider3D(lengths, Matrix4f::Transform(translation, rotation))
{
}
Boxf BoxCollider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f halfLengths(m_lengths * 0.5f);
Boxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
aabb.Transform(offsetMatrix, true);
aabb *= scale;
return aabb;
}
float BoxCollider3D::ComputeVolume() const
{
return m_lengths.x * m_lengths.y * m_lengths.z;
}
Vector3f BoxCollider3D::GetLengths() const
{
return m_lengths;
}
ColliderType3D BoxCollider3D::GetType() const
{
return ColliderType3D_Box;
}
NewtonCollision* BoxCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
}
/******************************** CapsuleCollider3D ********************************/
CapsuleCollider3D::CapsuleCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CapsuleCollider3D::CapsuleCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CapsuleCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CapsuleCollider3D::GetLength() const
{
return m_length;
}
float CapsuleCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D CapsuleCollider3D::GetType() const
{
return ColliderType3D_Capsule;
}
NewtonCollision* CapsuleCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/******************************* CompoundCollider3D ********************************/
CompoundCollider3D::CompoundCollider3D(std::vector<Collider3DRef> geoms) :
m_geoms(std::move(geoms))
{
}
const std::vector<Collider3DRef>& CompoundCollider3D::GetGeoms() const
{
return m_geoms;
}
ColliderType3D CompoundCollider3D::GetType() const
{
return ColliderType3D_Compound;
}
NewtonCollision* CompoundCollider3D::CreateHandle(PhysWorld3D* world) const
{
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
for (const Collider3DRef& geom : m_geoms)
{
if (geom->GetType() == ColliderType3D_Compound)
{
CompoundCollider3D* compoundGeom = static_cast<CompoundCollider3D*>(geom.Get());
for (const Collider3DRef& piece : compoundGeom->GetGeoms())
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
}
else
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
}
NewtonCompoundCollisionEndAddRemove(compoundCollision);
return compoundCollision;
}
/********************************* ConeCollider3D **********************************/
ConeCollider3D::ConeCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
ConeCollider3D::ConeCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
ConeCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float ConeCollider3D::GetLength() const
{
return m_length;
}
float ConeCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D ConeCollider3D::GetType() const
{
return ColliderType3D_Cone;
}
NewtonCollision* ConeCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/****************************** ConvexCollider3D *******************************/
ConvexCollider3D::ConvexCollider3D(SparsePtr<const Vector3f> vertices, unsigned int vertexCount, float tolerance, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_tolerance(tolerance)
{
m_vertices.resize(vertexCount);
if (vertices.GetStride() != sizeof(Vector3f))
{
for (unsigned int i = 0; i < vertexCount; ++i)
m_vertices[i] = *vertices++;
}
else // Fast path
std::memcpy(m_vertices.data(), vertices, vertexCount*sizeof(Vector3f));
}
ConvexCollider3D::ConvexCollider3D(SparsePtr<const Vector3f> vertices, unsigned int vertexCount, float tolerance, const Vector3f& translation, const Quaternionf& rotation) :
ConvexCollider3D(vertices, vertexCount, tolerance, Matrix4f::Transform(translation, rotation))
{
}
ColliderType3D ConvexCollider3D::GetType() const
{
return ColliderType3D_Compound;
}
NewtonCollision* ConvexCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateConvexHull(world->GetHandle(), static_cast<int>(m_vertices.size()), reinterpret_cast<const float*>(m_vertices.data()), sizeof(Vector3f), m_tolerance, 0, m_matrix);
}
/******************************* CylinderCollider3D ********************************/
CylinderCollider3D::CylinderCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CylinderCollider3D::CylinderCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CylinderCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CylinderCollider3D::GetLength() const
{
return m_length;
}
float CylinderCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D CylinderCollider3D::GetType() const
{
return ColliderType3D_Cylinder;
}
NewtonCollision* CylinderCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/********************************* NullCollider3D **********************************/
NullCollider3D::NullCollider3D()
{
}
ColliderType3D NullCollider3D::GetType() const
{
return ColliderType3D_Null;
}
void NullCollider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
if (inertia)
inertia->MakeUnit();
if (center)
center->MakeZero();
}
NewtonCollision* NullCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateNull(world->GetHandle());
}
/******************************** SphereCollider3D *********************************/
SphereCollider3D::SphereCollider3D(float radius, const Matrix4f& transformMatrix) :
SphereCollider3D(radius, transformMatrix.GetTranslation())
{
}
SphereCollider3D::SphereCollider3D(float radius, const Vector3f& translation, const Quaternionf& rotation) :
m_position(translation),
m_radius(radius)
{
NazaraUnused(rotation);
}
Boxf SphereCollider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f size(m_radius * NazaraSuffixMacro(M_SQRT3, f) * scale);
Vector3f position(offsetMatrix.GetTranslation());
return Boxf(position - size, position + size);
}
float SphereCollider3D::ComputeVolume() const
{
return float(M_PI) * m_radius * m_radius * m_radius / 3.f;
}
float SphereCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D SphereCollider3D::GetType() const
{
return ColliderType3D_Sphere;
}
NewtonCollision* SphereCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, Matrix4f::Translate(m_position));
}
}