NazaraEngine/src/Nazara/Physics/PhysObject.cpp

371 lines
8.9 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Physics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics/PhysObject.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <Nazara/Physics/Config.hpp>
#include <Nazara/Physics/PhysWorld.hpp>
#include <Newton/Newton.h>
#include <algorithm>
#include <Nazara/Physics/Debug.hpp>
namespace Nz
{
PhysObject::PhysObject(PhysWorld* world, const Matrix4f& mat) :
PhysObject(world, NullGeom::New(), mat)
{
}
PhysObject::PhysObject(PhysWorld* world, PhysGeomRef geom, const Matrix4f& mat) :
m_matrix(mat),
m_geom(std::move(geom)),
m_forceAccumulator(Vector3f::Zero()),
m_torqueAccumulator(Vector3f::Zero()),
m_world(world),
m_gravityFactor(1.f),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
if (!m_geom)
m_geom = NullGeom::New();
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
}
PhysObject::PhysObject(const PhysObject& object) :
m_matrix(object.m_matrix),
m_geom(object.m_geom),
m_forceAccumulator(Vector3f::Zero()),
m_torqueAccumulator(Vector3f::Zero()),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
SetMass(object.m_mass);
}
PhysObject::PhysObject(PhysObject&& object) :
m_matrix(std::move(object.m_matrix)),
m_geom(std::move(object.m_geom)),
m_forceAccumulator(std::move(object.m_forceAccumulator)),
m_torqueAccumulator(std::move(object.m_torqueAccumulator)),
m_body(object.m_body),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.m_mass)
{
object.m_body = nullptr;
}
PhysObject::~PhysObject()
{
if (m_body)
NewtonDestroyBody(m_body);
}
void PhysObject::AddForce(const Vector3f& force, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys_Global:
m_forceAccumulator += force;
break;
case CoordSys_Local:
m_forceAccumulator += GetRotation() * force;
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::AddForce(const Vector3f& force, const Vector3f& point, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys_Global:
m_forceAccumulator += force;
m_torqueAccumulator += Vector3f::CrossProduct(point - GetMassCenter(CoordSys_Global), force);
break;
case CoordSys_Local:
return AddForce(m_matrix.Transform(force, 0.f), m_matrix.Transform(point), CoordSys_Global);
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::AddTorque(const Vector3f& torque, CoordSys coordSys)
{
switch (coordSys)
{
case CoordSys_Global:
m_torqueAccumulator += torque;
break;
case CoordSys_Local:
m_torqueAccumulator += m_matrix.Transform(torque, 0.f);
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void PhysObject::EnableAutoSleep(bool autoSleep)
{
NewtonBodySetAutoSleep(m_body, autoSleep);
}
Boxf PhysObject::GetAABB() const
{
Vector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
return Boxf(min, max);
}
Vector3f PhysObject::GetAngularVelocity() const
{
Vector3f angularVelocity;
NewtonBodyGetOmega(m_body, angularVelocity);
return angularVelocity;
}
const PhysGeomRef& PhysObject::GetGeom() const
{
return m_geom;
}
float PhysObject::GetGravityFactor() const
{
return m_gravityFactor;
}
NewtonBody* PhysObject::GetHandle() const
{
return m_body;
}
float PhysObject::GetMass() const
{
return m_mass;
}
Vector3f PhysObject::GetMassCenter(CoordSys coordSys) const
{
Vector3f center;
NewtonBodyGetCentreOfMass(m_body, center);
switch (coordSys)
{
case CoordSys_Global:
center = m_matrix.Transform(center);
break;
case CoordSys_Local:
break; // Aucune opération à effectuer sur le centre de rotation
}
return center;
}
const Matrix4f& PhysObject::GetMatrix() const
{
return m_matrix;
}
Vector3f PhysObject::GetPosition() const
{
return m_matrix.GetTranslation();
}
Quaternionf PhysObject::GetRotation() const
{
return m_matrix.GetRotation();
}
Vector3f PhysObject::GetVelocity() const
{
Vector3f velocity;
NewtonBodyGetVelocity(m_body, velocity);
return velocity;
}
bool PhysObject::IsAutoSleepEnabled() const
{
return NewtonBodyGetAutoSleep(m_body) != 0;
}
bool PhysObject::IsMoveable() const
{
return m_mass > 0.f;
}
bool PhysObject::IsSleeping() const
{
return NewtonBodyGetSleepState(m_body) != 0;
}
void PhysObject::SetAngularVelocity(const Vector3f& angularVelocity)
{
NewtonBodySetOmega(m_body, angularVelocity);
}
void PhysObject::SetGeom(PhysGeomRef geom)
{
if (m_geom.Get() != geom)
{
if (geom)
m_geom = geom;
else
m_geom = NullGeom::New();
NewtonBodySetCollision(m_body, m_geom->GetHandle(m_world));
}
}
void PhysObject::SetGravityFactor(float gravityFactor)
{
m_gravityFactor = gravityFactor;
}
void PhysObject::SetMass(float mass)
{
if (m_mass > 0.f)
{
float Ix, Iy, Iz;
NewtonBodyGetMassMatrix(m_body, &m_mass, &Ix, &Iy, &Iz);
float scale = mass/m_mass;
NewtonBodySetMassMatrix(m_body, mass, Ix*scale, Iy*scale, Iz*scale);
}
else if (mass > 0.f)
{
Vector3f inertia, origin;
m_geom->ComputeInertialMatrix(&inertia, &origin);
NewtonBodySetCentreOfMass(m_body, &origin.x);
NewtonBodySetMassMatrix(m_body, mass, inertia.x*mass, inertia.y*mass, inertia.z*mass);
NewtonBodySetForceAndTorqueCallback(m_body, &ForceAndTorqueCallback);
NewtonBodySetTransformCallback(m_body, &TransformCallback);
}
m_mass = mass;
}
void PhysObject::SetMassCenter(const Vector3f& center)
{
if (m_mass > 0.f)
NewtonBodySetCentreOfMass(m_body, center);
}
void PhysObject::SetPosition(const Vector3f& position)
{
m_matrix.SetTranslation(position);
UpdateBody();
}
void PhysObject::SetRotation(const Quaternionf& rotation)
{
m_matrix.SetRotation(rotation);
UpdateBody();
}
void PhysObject::SetVelocity(const Vector3f& velocity)
{
NewtonBodySetVelocity(m_body, velocity);
}
PhysObject& PhysObject::operator=(const PhysObject& object)
{
PhysObject physObj(object);
return operator=(std::move(physObj));
}
void PhysObject::UpdateBody()
{
NewtonBodySetMatrix(m_body, m_matrix);
if (NumberEquals(m_mass, 0.f))
{
// http://newtondynamics.com/wiki/index.php5?title=Can_i_dynamicly_move_a_TriMesh%3F
Vector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
NewtonWorldForEachBodyInAABBDo(m_world->GetHandle(), min, max, [](const NewtonBody* const body, void* const userData) -> int
{
NazaraUnused(userData);
NewtonBodySetSleepState(body, 0);
return 1;
},
nullptr);
}
/*for (std::set<PhysObjectListener*>::iterator it = m_listeners.begin(); it != m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(this);*/
}
PhysObject& PhysObject::operator=(PhysObject&& object)
{
if (m_body)
NewtonDestroyBody(m_body);
m_body = object.m_body;
m_forceAccumulator = std::move(object.m_forceAccumulator);
m_geom = std::move(object.m_geom);
m_gravityFactor = object.m_gravityFactor;
m_mass = object.m_mass;
m_matrix = std::move(object.m_matrix);
m_torqueAccumulator = std::move(object.m_torqueAccumulator);
m_world = object.m_world;
object.m_body = nullptr;
return *this;
}
void PhysObject::ForceAndTorqueCallback(const NewtonBody* body, float timeStep, int threadIndex)
{
NazaraUnused(timeStep);
NazaraUnused(threadIndex);
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
if (!NumberEquals(me->m_gravityFactor, 0.f))
me->m_forceAccumulator += me->m_world->GetGravity() * me->m_gravityFactor * me->m_mass;
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectApplyForce(me);*/
NewtonBodySetForce(body, me->m_forceAccumulator);
NewtonBodySetTorque(body, me->m_torqueAccumulator);
me->m_torqueAccumulator.Set(0.f);
me->m_forceAccumulator.Set(0.f);
///TODO: Implanter la force gyroscopique?
}
void PhysObject::TransformCallback(const NewtonBody* body, const float* matrix, int threadIndex)
{
NazaraUnused(threadIndex);
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
me->m_matrix.Set(matrix);
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(me);*/
}
}