371 lines
8.9 KiB
C++
371 lines
8.9 KiB
C++
// Copyright (C) 2015 Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Physics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Physics/PhysObject.hpp>
|
|
#include <Nazara/Math/Algorithm.hpp>
|
|
#include <Nazara/Physics/Config.hpp>
|
|
#include <Nazara/Physics/PhysWorld.hpp>
|
|
#include <Newton/Newton.h>
|
|
#include <algorithm>
|
|
#include <Nazara/Physics/Debug.hpp>
|
|
|
|
namespace Nz
|
|
{
|
|
PhysObject::PhysObject(PhysWorld* world, const Matrix4f& mat) :
|
|
PhysObject(world, NullGeom::New(), mat)
|
|
{
|
|
}
|
|
|
|
PhysObject::PhysObject(PhysWorld* world, PhysGeomRef geom, const Matrix4f& mat) :
|
|
m_matrix(mat),
|
|
m_geom(std::move(geom)),
|
|
m_forceAccumulator(Vector3f::Zero()),
|
|
m_torqueAccumulator(Vector3f::Zero()),
|
|
m_world(world),
|
|
m_gravityFactor(1.f),
|
|
m_mass(0.f)
|
|
{
|
|
NazaraAssert(m_world, "Invalid world");
|
|
|
|
if (!m_geom)
|
|
m_geom = NullGeom::New();
|
|
|
|
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
|
|
NewtonBodySetUserData(m_body, this);
|
|
}
|
|
|
|
PhysObject::PhysObject(const PhysObject& object) :
|
|
m_matrix(object.m_matrix),
|
|
m_geom(object.m_geom),
|
|
m_forceAccumulator(Vector3f::Zero()),
|
|
m_torqueAccumulator(Vector3f::Zero()),
|
|
m_world(object.m_world),
|
|
m_gravityFactor(object.m_gravityFactor),
|
|
m_mass(0.f)
|
|
{
|
|
NazaraAssert(m_world, "Invalid world");
|
|
NazaraAssert(m_geom, "Invalid geometry");
|
|
|
|
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
|
|
NewtonBodySetUserData(m_body, this);
|
|
SetMass(object.m_mass);
|
|
}
|
|
|
|
PhysObject::PhysObject(PhysObject&& object) :
|
|
m_matrix(std::move(object.m_matrix)),
|
|
m_geom(std::move(object.m_geom)),
|
|
m_forceAccumulator(std::move(object.m_forceAccumulator)),
|
|
m_torqueAccumulator(std::move(object.m_torqueAccumulator)),
|
|
m_body(object.m_body),
|
|
m_world(object.m_world),
|
|
m_gravityFactor(object.m_gravityFactor),
|
|
m_mass(object.m_mass)
|
|
{
|
|
object.m_body = nullptr;
|
|
}
|
|
|
|
PhysObject::~PhysObject()
|
|
{
|
|
if (m_body)
|
|
NewtonDestroyBody(m_body);
|
|
}
|
|
|
|
void PhysObject::AddForce(const Vector3f& force, CoordSys coordSys)
|
|
{
|
|
switch (coordSys)
|
|
{
|
|
case CoordSys_Global:
|
|
m_forceAccumulator += force;
|
|
break;
|
|
|
|
case CoordSys_Local:
|
|
m_forceAccumulator += GetRotation() * force;
|
|
break;
|
|
}
|
|
|
|
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
|
|
NewtonBodySetSleepState(m_body, 0);
|
|
}
|
|
|
|
void PhysObject::AddForce(const Vector3f& force, const Vector3f& point, CoordSys coordSys)
|
|
{
|
|
switch (coordSys)
|
|
{
|
|
case CoordSys_Global:
|
|
m_forceAccumulator += force;
|
|
m_torqueAccumulator += Vector3f::CrossProduct(point - GetMassCenter(CoordSys_Global), force);
|
|
break;
|
|
|
|
case CoordSys_Local:
|
|
return AddForce(m_matrix.Transform(force, 0.f), m_matrix.Transform(point), CoordSys_Global);
|
|
}
|
|
|
|
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
|
|
NewtonBodySetSleepState(m_body, 0);
|
|
}
|
|
|
|
void PhysObject::AddTorque(const Vector3f& torque, CoordSys coordSys)
|
|
{
|
|
switch (coordSys)
|
|
{
|
|
case CoordSys_Global:
|
|
m_torqueAccumulator += torque;
|
|
break;
|
|
|
|
case CoordSys_Local:
|
|
m_torqueAccumulator += m_matrix.Transform(torque, 0.f);
|
|
break;
|
|
}
|
|
|
|
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
|
|
NewtonBodySetSleepState(m_body, 0);
|
|
}
|
|
|
|
void PhysObject::EnableAutoSleep(bool autoSleep)
|
|
{
|
|
NewtonBodySetAutoSleep(m_body, autoSleep);
|
|
}
|
|
|
|
Boxf PhysObject::GetAABB() const
|
|
{
|
|
Vector3f min, max;
|
|
NewtonBodyGetAABB(m_body, min, max);
|
|
|
|
return Boxf(min, max);
|
|
}
|
|
|
|
Vector3f PhysObject::GetAngularVelocity() const
|
|
{
|
|
Vector3f angularVelocity;
|
|
NewtonBodyGetOmega(m_body, angularVelocity);
|
|
|
|
return angularVelocity;
|
|
}
|
|
|
|
const PhysGeomRef& PhysObject::GetGeom() const
|
|
{
|
|
return m_geom;
|
|
}
|
|
|
|
float PhysObject::GetGravityFactor() const
|
|
{
|
|
return m_gravityFactor;
|
|
}
|
|
|
|
NewtonBody* PhysObject::GetHandle() const
|
|
{
|
|
return m_body;
|
|
}
|
|
|
|
float PhysObject::GetMass() const
|
|
{
|
|
return m_mass;
|
|
}
|
|
|
|
Vector3f PhysObject::GetMassCenter(CoordSys coordSys) const
|
|
{
|
|
Vector3f center;
|
|
NewtonBodyGetCentreOfMass(m_body, center);
|
|
|
|
switch (coordSys)
|
|
{
|
|
case CoordSys_Global:
|
|
center = m_matrix.Transform(center);
|
|
break;
|
|
|
|
case CoordSys_Local:
|
|
break; // Aucune opération à effectuer sur le centre de rotation
|
|
}
|
|
|
|
return center;
|
|
}
|
|
|
|
const Matrix4f& PhysObject::GetMatrix() const
|
|
{
|
|
return m_matrix;
|
|
}
|
|
|
|
Vector3f PhysObject::GetPosition() const
|
|
{
|
|
return m_matrix.GetTranslation();
|
|
}
|
|
|
|
Quaternionf PhysObject::GetRotation() const
|
|
{
|
|
return m_matrix.GetRotation();
|
|
}
|
|
|
|
Vector3f PhysObject::GetVelocity() const
|
|
{
|
|
Vector3f velocity;
|
|
NewtonBodyGetVelocity(m_body, velocity);
|
|
|
|
return velocity;
|
|
}
|
|
|
|
bool PhysObject::IsAutoSleepEnabled() const
|
|
{
|
|
return NewtonBodyGetAutoSleep(m_body) != 0;
|
|
}
|
|
|
|
bool PhysObject::IsMoveable() const
|
|
{
|
|
return m_mass > 0.f;
|
|
}
|
|
|
|
bool PhysObject::IsSleeping() const
|
|
{
|
|
return NewtonBodyGetSleepState(m_body) != 0;
|
|
}
|
|
|
|
void PhysObject::SetAngularVelocity(const Vector3f& angularVelocity)
|
|
{
|
|
NewtonBodySetOmega(m_body, angularVelocity);
|
|
}
|
|
|
|
void PhysObject::SetGeom(PhysGeomRef geom)
|
|
{
|
|
if (m_geom.Get() != geom)
|
|
{
|
|
if (geom)
|
|
m_geom = geom;
|
|
else
|
|
m_geom = NullGeom::New();
|
|
|
|
NewtonBodySetCollision(m_body, m_geom->GetHandle(m_world));
|
|
}
|
|
}
|
|
|
|
void PhysObject::SetGravityFactor(float gravityFactor)
|
|
{
|
|
m_gravityFactor = gravityFactor;
|
|
}
|
|
|
|
void PhysObject::SetMass(float mass)
|
|
{
|
|
if (m_mass > 0.f)
|
|
{
|
|
float Ix, Iy, Iz;
|
|
NewtonBodyGetMassMatrix(m_body, &m_mass, &Ix, &Iy, &Iz);
|
|
float scale = mass/m_mass;
|
|
NewtonBodySetMassMatrix(m_body, mass, Ix*scale, Iy*scale, Iz*scale);
|
|
}
|
|
else if (mass > 0.f)
|
|
{
|
|
Vector3f inertia, origin;
|
|
m_geom->ComputeInertialMatrix(&inertia, &origin);
|
|
|
|
NewtonBodySetCentreOfMass(m_body, &origin.x);
|
|
NewtonBodySetMassMatrix(m_body, mass, inertia.x*mass, inertia.y*mass, inertia.z*mass);
|
|
NewtonBodySetForceAndTorqueCallback(m_body, &ForceAndTorqueCallback);
|
|
NewtonBodySetTransformCallback(m_body, &TransformCallback);
|
|
}
|
|
|
|
m_mass = mass;
|
|
}
|
|
|
|
void PhysObject::SetMassCenter(const Vector3f& center)
|
|
{
|
|
if (m_mass > 0.f)
|
|
NewtonBodySetCentreOfMass(m_body, center);
|
|
}
|
|
|
|
void PhysObject::SetPosition(const Vector3f& position)
|
|
{
|
|
m_matrix.SetTranslation(position);
|
|
UpdateBody();
|
|
}
|
|
|
|
void PhysObject::SetRotation(const Quaternionf& rotation)
|
|
{
|
|
m_matrix.SetRotation(rotation);
|
|
UpdateBody();
|
|
}
|
|
|
|
void PhysObject::SetVelocity(const Vector3f& velocity)
|
|
{
|
|
NewtonBodySetVelocity(m_body, velocity);
|
|
}
|
|
|
|
PhysObject& PhysObject::operator=(const PhysObject& object)
|
|
{
|
|
PhysObject physObj(object);
|
|
return operator=(std::move(physObj));
|
|
}
|
|
|
|
void PhysObject::UpdateBody()
|
|
{
|
|
NewtonBodySetMatrix(m_body, m_matrix);
|
|
|
|
if (NumberEquals(m_mass, 0.f))
|
|
{
|
|
// http://newtondynamics.com/wiki/index.php5?title=Can_i_dynamicly_move_a_TriMesh%3F
|
|
Vector3f min, max;
|
|
NewtonBodyGetAABB(m_body, min, max);
|
|
|
|
NewtonWorldForEachBodyInAABBDo(m_world->GetHandle(), min, max, [](const NewtonBody* const body, void* const userData) -> int
|
|
{
|
|
NazaraUnused(userData);
|
|
NewtonBodySetSleepState(body, 0);
|
|
return 1;
|
|
},
|
|
nullptr);
|
|
}
|
|
/*for (std::set<PhysObjectListener*>::iterator it = m_listeners.begin(); it != m_listeners.end(); ++it)
|
|
(*it)->PhysObjectOnUpdate(this);*/
|
|
}
|
|
|
|
PhysObject& PhysObject::operator=(PhysObject&& object)
|
|
{
|
|
if (m_body)
|
|
NewtonDestroyBody(m_body);
|
|
|
|
m_body = object.m_body;
|
|
m_forceAccumulator = std::move(object.m_forceAccumulator);
|
|
m_geom = std::move(object.m_geom);
|
|
m_gravityFactor = object.m_gravityFactor;
|
|
m_mass = object.m_mass;
|
|
m_matrix = std::move(object.m_matrix);
|
|
m_torqueAccumulator = std::move(object.m_torqueAccumulator);
|
|
m_world = object.m_world;
|
|
|
|
object.m_body = nullptr;
|
|
|
|
return *this;
|
|
}
|
|
|
|
void PhysObject::ForceAndTorqueCallback(const NewtonBody* body, float timeStep, int threadIndex)
|
|
{
|
|
NazaraUnused(timeStep);
|
|
NazaraUnused(threadIndex);
|
|
|
|
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
|
|
|
|
if (!NumberEquals(me->m_gravityFactor, 0.f))
|
|
me->m_forceAccumulator += me->m_world->GetGravity() * me->m_gravityFactor * me->m_mass;
|
|
|
|
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
|
|
(*it)->PhysObjectApplyForce(me);*/
|
|
|
|
NewtonBodySetForce(body, me->m_forceAccumulator);
|
|
NewtonBodySetTorque(body, me->m_torqueAccumulator);
|
|
|
|
me->m_torqueAccumulator.Set(0.f);
|
|
me->m_forceAccumulator.Set(0.f);
|
|
|
|
///TODO: Implanter la force gyroscopique?
|
|
}
|
|
|
|
void PhysObject::TransformCallback(const NewtonBody* body, const float* matrix, int threadIndex)
|
|
{
|
|
NazaraUnused(threadIndex);
|
|
|
|
PhysObject* me = static_cast<PhysObject*>(NewtonBodyGetUserData(body));
|
|
me->m_matrix.Set(matrix);
|
|
|
|
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
|
|
(*it)->PhysObjectOnUpdate(me);*/
|
|
}
|
|
}
|