NazaraEngine/include/Nazara/Math/Quaternion.inl

889 lines
21 KiB
C++

// Copyright (C) 2017 Rémi Bèges - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Algorithm.hpp>
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Math/Algorithm.hpp>
#include <Nazara/Math/Config.hpp>
#include <Nazara/Math/EulerAngles.hpp>
#include <Nazara/Math/Vector3.hpp>
#include <cstring>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
namespace Nz
{
/*!
* \ingroup math
* \class Nz::Quaternion
* \brief Math class that represents an element of the quaternions
*
* \remark The quaternion is meant to be 'unit' to represent rotations in a three dimensional space
*/
/*!
* \brief Constructs a Quaternion object from its components
*
* \param W W component
* \param X X component
* \param Y Y component
* \param Z Z component
*/
template<typename T>
Quaternion<T>::Quaternion(T W, T X, T Y, T Z)
{
Set(W, X, Y, Z);
}
/*!
* \brief Constructs a Quaternion object from a EulerAngles
*
* \param angles Easier representation of rotation of space
*
* \see EulerAngles
*/
template<typename T>
Quaternion<T>::Quaternion(const EulerAngles<T>& angles)
{
Set(angles);
}
/*!
* \brief Constructs a Quaternion object from an angle and a direction
*
* \param angle Unit depends of NAZARA_MATH_ANGLE_RADIAN
* \param axis Vector3 which represents a direction, no need to be normalized
*/
template<typename T>
Quaternion<T>::Quaternion(T angle, const Vector3<T>& axis)
{
Set(angle, axis);
}
/*!
* \brief Constructs a Quaternion object from an array of four elements
*
* \param quat[4] quat[0] is W component, quat[1] is X component, quat[2] is Y component and quat[3] is Z component
*/
template<typename T>
Quaternion<T>::Quaternion(const T quat[4])
{
Set(quat);
}
/*
template<typename T>
Quaternion<T>::Quaternion(const Matrix3<T>& mat)
{
Set(mat);
}
*/
/*!
* \brief Constructs a Quaternion object from another type of Quaternion
*
* \param quat Quaternion of type U to convert to type T
*/
template<typename T>
template<typename U>
Quaternion<T>::Quaternion(const Quaternion<U>& quat)
{
Set(quat);
}
/*!
* \brief Computes the w component of the quaternion to make it unit
* \return A reference to this quaternion
*/
template<typename T>
Quaternion<T>& Quaternion<T>::ComputeW()
{
T t = F(1.0) - SquaredMagnitude();
if (t < F(0.0))
w = F(0.0);
else
w = -std::sqrt(t);
return *this;
}
/*!
* \brief Returns the rotational conjugate of this quaternion
* \return A reference to this quaternion
*
* The conjugate of a quaternion represents the same rotation in the opposite direction about the rotational axis
*
* \see GetConjugate
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Conjugate()
{
x = -x;
y = -y;
z = -z;
return *this;
}
/*!
* \brief Calculates the dot (scalar) product with two quaternions
* \return The value of the dot product
*
* \param quat The other quaternion to calculate the dot product with
*/
template<typename T>
T Quaternion<T>::DotProduct(const Quaternion& quat) const
{
return w * quat.w + x * quat.x + y * quat.y + z * quat.z;
}
/*!
* \brief Gets the rotational conjugate of this quaternion
* \return A new quaternion which is the conjugate of this quaternion
*
* The conjugate of a quaternion represents the same rotation in the opposite direction about the rotational axis
*
* \see Conjugate
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetConjugate() const
{
Quaternion<T> quat(*this);
quat.Conjugate();
return quat;
}
/*!
* \brief Gets the inverse of this quaternion
* \return A new quaternion which is the inverse of this quaternion
*
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0)
*
* \see Inverse
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetInverse() const
{
Quaternion<T> quat(*this);
quat.Inverse();
return quat;
}
/*!
* \brief Gets the normalization of this quaternion
* \return A new quaternion which is the normalization of this quaternion
*
* \param length Optional argument to obtain the length's ratio of the quaternion and the unit-length
*
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0) and length is 0
*
* \see Normalize
*/
template<typename T>
Quaternion<T> Quaternion<T>::GetNormal(T* length) const
{
Quaternion<T> quat(*this);
quat.Normalize(length);
return quat;
}
/*!
* \brief Inverts this quaternion
* \return A reference to this quaternion which is now inverted
*
* \remark If this quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0)
*
* \see GetInverse
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Inverse()
{
T norm = SquaredMagnitude();
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= -invNorm;
y *= -invNorm;
z *= -invNorm;
}
return *this;
}
/*!
* \brief Makes the quaternion (1, 0, 0, 0)
* \return A reference to this vector with components (1, 0, 0, 0)
*
* \see Unit
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeIdentity()
{
return Set(F(1.0), F(0.0), F(0.0), F(0.0));
}
/*!
* \brief Makes this quaternion to the rotation required to rotate direction Vector3 from to direction Vector3 to
* \return A reference to this vector which is the rotation needed
*
* \param from Initial vector
* \param to Target vector
*
* \remark Vectors are not required to be normalized
*
* \see RotationBetween
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeRotationBetween(const Vector3<T>& from, const Vector3<T>& to)
{
// Based on: http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors
T norm = std::sqrt(from.GetSquaredLength() * to.GetSquaredLength());
Vector3<T> crossProduct = from.CrossProduct(to);
Set(norm + from.DotProduct(to), crossProduct.x, crossProduct.y, crossProduct.z);
return Normalize();
}
/*!
* \brief Makes the quaternion (0, 0, 0, 0)
* \return A reference to this vector with components (0, 0, 0, 0)
*
* \see Zero
*/
template<typename T>
Quaternion<T>& Quaternion<T>::MakeZero()
{
return Set(F(0.0), F(0.0), F(0.0), F(0.0));
}
/*!
* \brief Calculates the magnitude (length) of the quaternion
* \return The magnitude
*
* \see SquaredMagnitude
*/
template<typename T>
T Quaternion<T>::Magnitude() const
{
return std::sqrt(SquaredMagnitude());
}
/*!
* \brief Normalizes the current quaternion
* \return A reference to this quaternion which is now normalized
*
* \param length Optional argument to obtain the length's ratio of the quaternion and the unit-length
*
* \remark If the quaternion is (0, 0, 0, 0), then it returns (0, 0, 0, 0) and length is 0
*
* \see GetNormal
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Normalize(T* length)
{
T norm = std::sqrt(SquaredMagnitude());
if (norm > F(0.0))
{
T invNorm = F(1.0) / norm;
w *= invNorm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
}
if (length)
*length = norm;
return *this;
}
/*!
* \brief Sets the components of the quaternion
* \return A reference to this quaternion
*
* \param W W component
* \param X X component
* \param Y Y component
* \param Z Z component
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(T W, T X, T Y, T Z)
{
w = W;
x = X;
y = Y;
z = Z;
return *this;
}
/*!
* \brief Sets this quaternion from rotation specified by Euler angle
* \return A reference to this quaternion
*
* \param angles Easier representation of rotation of space
*
* \see EulerAngles
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(const EulerAngles<T>& angles)
{
return Set(angles.ToQuaternion());
}
/*!
* \brief Sets this quaternion from rotation specified by axis and angle
* \return A reference to this quaternion
*
* \param angle Unit depends of NAZARA_MATH_ANGLE_RADIAN
* \param axis Vector3 which represents a direction, no need to be normalized
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(T angle, const Vector3<T>& axis)
{
#if !NAZARA_MATH_ANGLE_RADIAN
angle = DegreeToRadian(angle);
#endif
angle /= F(2.0);
Vector3<T> normalizedAxis = axis.GetNormal();
T sinAngle = std::sin(angle);
w = std::cos(angle);
x = normalizedAxis.x * sinAngle;
y = normalizedAxis.y * sinAngle;
z = normalizedAxis.z * sinAngle;
return Normalize();
}
/*!
* \brief Sets the components of the quaternion from an array of four elements
* \return A reference to this quaternion
*
* \param quat[4] quat[0] is W component, quat[1] is X component, quat[2] is Y component and quat[3] is Z component
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(const T quat[4])
{
w = quat[0];
x = quat[1];
y = quat[2];
z = quat[3];
return *this;
}
/*!
* \brief Sets the components of the quaternion from another quaternion
* \return A reference to this quaternion
*
* \param quat The other quaternion
*/
template<typename T>
Quaternion<T>& Quaternion<T>::Set(const Quaternion& quat)
{
std::memcpy(this, &quat, sizeof(Quaternion));
return *this;
}
/*!
* \brief Sets the components of the quaternion from another type of Quaternion
* \return A reference to this quaternion
*
* \param quat Quaternion of type U to convert its components
*/
template<typename T>
template<typename U>
Quaternion<T>& Quaternion<T>::Set(const Quaternion<U>& quat)
{
w = F(quat.w);
x = F(quat.x);
y = F(quat.y);
z = F(quat.z);
return *this;
}
/*!
* \brief Calculates the squared magnitude (length) of the quaternion
* \return The squared magnitude
*
* \see Magnitude
*/
template<typename T>
T Quaternion<T>::SquaredMagnitude() const
{
return w * w + x * x + y * y + z * z;
}
/*!
* \brief Converts this quaternion to Euler angles representation
* \return EulerAngles which is the representation of this rotation
*
* \remark Rotation are "left-handed"
*/
template<typename T>
EulerAngles<T> Quaternion<T>::ToEulerAngles() const
{
T test = x * y + z * w;
if (test > F(0.499))
// singularity at north pole
return EulerAngles<T>(F(0.0), FromRadians(F(2.0) * std::atan2(x, w)), FromDegrees(F(90.0)));
if (test < F(-0.499))
// singularity at south pole
return EulerAngles<T>(F(0.0), FromRadians(F(-2.0) * std::atan2(x, w)), FromDegrees(F(-90.0)));
return EulerAngles<T>(FromRadians(std::atan2(F(2.0) * x * w - F(2.0) * y * z, F(1.0) - F(2.0) * x * x - F(2.0) * z * z)),
FromRadians(std::atan2(F(2.0) * y * w - F(2.0) * x * z, F(1.0) - F(2.0) * y * y - F(2.0) * z * z)),
FromRadians(std::asin(F(2.0) * test)));
}
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Quaternion(w | x, y, z)"
*/
template<typename T>
String Quaternion<T>::ToString() const
{
StringStream ss;
return ss << "Quaternion(" << w << " | " << x << ", " << y << ", " << z << ')';
}
/*!
* \brief Adds the components of the quaternion with other quaternion
* \return A quaternion where components are the sum of this quaternion and the other one
*
* \param quat The other quaternion to add components with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator+(const Quaternion& quat) const
{
Quaternion result;
result.w = w + quat.w;
result.x = x + quat.x;
result.y = y + quat.y;
result.z = z + quat.z;
return result;
}
/*!
* \brief Multiplies of the quaternion with other quaternion
* \return A quaternion which is the product of those two according to operator* in quaternions
*
* \param quat The other quaternion to multiply with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator*(const Quaternion& quat) const
{
Quaternion result;
result.w = w * quat.w - x * quat.x - y * quat.y - z * quat.z;
result.x = w * quat.x + x * quat.w + y * quat.z - z * quat.y;
result.y = w * quat.y + y * quat.w + z * quat.x - x * quat.z;
result.z = w * quat.z + z * quat.w + x * quat.y - y * quat.x;
return result;
}
/*!
* \brief Apply the quaternion to the Vector3
* \return A Vector3f which is the vector rotated by this quaternion
*
* \param vec The vector to multiply with
*/
template<typename T>
Vector3<T> Quaternion<T>::operator*(const Vector3<T>& vec) const
{
Vector3<T> quatVec(x, y, z);
Vector3<T> uv = quatVec.CrossProduct(vec);
Vector3<T> uuv = quatVec.CrossProduct(uv);
uv *= F(2.0) * w;
uuv *= F(2.0);
return vec + uv + uuv;
}
/*!
* \brief Multiplies the components of the quaternion with a scalar
* \return A quaternion where components are the product of this quaternion and the scalar
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator*(T scale) const
{
return Quaternion(w * scale,
x * scale,
y * scale,
z * scale);
}
/*!
* \brief Divides the quaternion with other quaternion
* \return A quaternion which is the quotient of those two according to operator* in quaternions
*
* \param quat The other quaternion to divide with
*/
template<typename T>
Quaternion<T> Quaternion<T>::operator/(const Quaternion& quat) const
{
return quat.GetConjugate() * (*this);
}
/*!
* \brief Adds the components of the quaternion with other quaternion
* \return A reference to this quaternion where components are the sum of this quaternion and the other one
*
* \param quat The other quaternion to add components with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator+=(const Quaternion& quat)
{
return operator=(operator+(quat));
}
/*!
* \brief Multiplies of the quaternion with other quaternion
* \return A reference to this quaternion which is the product of those two according to operator* in quaternions
*
* \param quat The other quaternion to multiply with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator*=(const Quaternion& quat)
{
return operator=(operator*(quat));
}
/*!
* \brief Multiplies the components of the quaternion with a scalar
* \return A reference to this quaternion where components are the product of this quaternion and the scalar
*
* \param scale The scalar to multiply components with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator*=(T scale)
{
return operator=(operator*(scale));
}
/*!
* \brief Divides the quaternion with other quaternion
* \return A reference to this quaternion which is the quotient of those two according to operator* in quaternions
*
* \param quat The other quaternion to divide with
*/
template<typename T>
Quaternion<T>& Quaternion<T>::operator/=(const Quaternion& quat)
{
return operator=(operator/(quat));
}
/*!
* \brief Compares the quaternion to other one
* \return true if the quaternions are the same
*
* \param quat Other quaternion to compare with
*/
template<typename T>
bool Quaternion<T>::operator==(const Quaternion& quat) const
{
return NumberEquals(w, quat.w) &&
NumberEquals(x, quat.x) &&
NumberEquals(y, quat.y) &&
NumberEquals(z, quat.z);
}
/*!
* \brief Compares the quaternion to other one
* \return false if the quaternions are the same
*
* \param quat Other quaternion to compare with
*/
template<typename T>
bool Quaternion<T>::operator!=(const Quaternion& quat) const
{
return !operator==(quat);
}
/*!
* \brief Shorthand for the quaternion (1, 0, 0, 0)
* \return A quaternion with components (1, 0, 0, 0)
*
* \see MakeIdentity
*/
template<typename T>
Quaternion<T> Quaternion<T>::Identity()
{
Quaternion quaternion;
quaternion.MakeIdentity();
return quaternion;
}
/*!
* \brief Interpolates the quaternion to other one with a factor of interpolation
* \return A new quaternion which is the interpolation of two quaternions
*
* \param from Initial quaternion
* \param to Target quaternion
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Zero() is returned
*
* \see Lerp, Slerp
*/
template<typename T>
Quaternion<T> Quaternion<T>::Lerp(const Quaternion& from, const Quaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + String::Number(interpolation) + ')');
return Zero();
}
#endif
Quaternion interpolated;
interpolated.w = Nz::Lerp(from.w, to.w, interpolation);
interpolated.x = Nz::Lerp(from.x, to.x, interpolation);
interpolated.y = Nz::Lerp(from.y, to.y, interpolation);
interpolated.z = Nz::Lerp(from.z, to.z, interpolation);
return interpolated;
}
/*!
* \brief Gives the normalized quaternion
* \return A normalized quaternion from the quat
*
* \param quat Quaternion to normalize
* \param length Optional argument to obtain the length's ratio of the vector and the unit-length
*
* \see GetNormal
*/
template<typename T>
Quaternion<T> Quaternion<T>::Normalize(const Quaternion& quat, T* length)
{
return quat.GetNormal(length);
}
/*!
* \brief Gets the rotation required to rotate direction Vector3 from to direction Vector3 to
* \return A quaternion which is the rotation needed between those two Vector3
*
* \param from Initial vector
* \param to Target vector
*
* \see MakeRotationBetween
*/
template<typename T>
Quaternion<T> Quaternion<T>::RotationBetween(const Vector3<T>& from, const Vector3<T>& to)
{
Quaternion quaternion;
quaternion.MakeRotationBetween(from, to);
return quaternion;
}
/*!
* \brief Interpolates spherically the quaternion to other one with a factor of interpolation
* \return A new quaternion which is the interpolation of two quaternions
*
* \param from Initial quaternion
* \param to Target quaternion
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Zero() is returned
*
* \see Lerp
*/
template<typename T>
Quaternion<T> Quaternion<T>::Slerp(const Quaternion& from, const Quaternion& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < F(0.0) || interpolation > F(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + String::Number(interpolation) + ')');
return Zero();
}
#endif
Quaternion q;
T cosOmega = from.DotProduct(to);
if (cosOmega < F(0.0))
{
// We invert everything
q.Set(-to.w, -to.x, -to.y, -to.z);
cosOmega = -cosOmega;
}
else
q.Set(to);
T k0, k1;
if (cosOmega > F(0.9999))
{
// Linear interpolation to avoid division by zero
k0 = F(1.0) - interpolation;
k1 = interpolation;
}
else
{
T sinOmega = std::sqrt(F(1.0) - cosOmega*cosOmega);
T omega = std::atan2(sinOmega, cosOmega);
// To avoid two divisions
sinOmega = F(1.0)/sinOmega;
k0 = std::sin((F(1.0) - interpolation) * omega) * sinOmega;
k1 = std::sin(interpolation*omega) * sinOmega;
}
Quaternion result(k0 * from.w, k0 * from.x, k0 * from.y, k0 * from.z);
return result += q * k1;
}
/*!
* \brief Shorthand for the quaternion (0, 0, 0, 0)
* \return A quaternion with components (0, 0, 0, 0)
*
* \see MakeZero
*/
template<typename T>
Quaternion<T> Quaternion<T>::Zero()
{
Quaternion quaternion;
quaternion.MakeZero();
return quaternion;
}
/*!
* \brief Serializes a Quaternion
* \return true if successfully serialized
*
* \param context Serialization context
* \param quat Input Quaternion
*/
template<typename T>
bool Serialize(SerializationContext& context, const Quaternion<T>& quat, TypeTag<Quaternion<T>>)
{
if (!Serialize(context, quat.x))
return false;
if (!Serialize(context, quat.y))
return false;
if (!Serialize(context, quat.z))
return false;
if (!Serialize(context, quat.w))
return false;
return true;
}
/*!
* \brief Unserializes a Quaternion
* \return true if successfully unserialized
*
* \param context Serialization context
* \param quat Output Quaternion
*/
template<typename T>
bool Unserialize(SerializationContext& context, Quaternion<T>* quat, TypeTag<Quaternion<T>>)
{
if (!Unserialize(context, &quat->x))
return false;
if (!Unserialize(context, &quat->y))
return false;
if (!Unserialize(context, &quat->z))
return false;
if (!Unserialize(context, &quat->w))
return false;
return true;
}
}
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param quat The quaternion to output
*/
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Quaternion<T>& quat)
{
return out << quat.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>