NazaraEngine/plugins/Assimp/Plugin.cpp

652 lines
24 KiB
C++

/*
Nazara Engine - Assimp Plugin
Copyright (C) 2015 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <CustomStream.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/String.hpp>
#include <Nazara/Utility/Animation.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/IndexIterator.hpp>
#include <Nazara/Utility/IndexMapper.hpp>
#include <Nazara/Utility/Joint.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/Sequence.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/Skeleton.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/VertexMapper.hpp>
#include <assimp/cfileio.h>
#include <assimp/cimport.h>
#include <assimp/config.h>
#include <assimp/mesh.h>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <set>
using namespace Nz;
void ProcessJoints(aiNode* node, Skeleton* skeleton, const std::set<Nz::String>& joints)
{
Nz::String jointName(node->mName.data, node->mName.length);
if (joints.count(jointName))
{
Joint* joint = skeleton->GetJoint(jointName);
if (joint)
{
if (node->mParent)
joint->SetParent(skeleton->GetJoint(node->mParent->mName.C_Str()));
Matrix4f transformMatrix(node->mTransformation.a1, node->mTransformation.a2, node->mTransformation.a3, node->mTransformation.a4,
node->mTransformation.b1, node->mTransformation.b2, node->mTransformation.b3, node->mTransformation.b4,
node->mTransformation.c1, node->mTransformation.c2, node->mTransformation.c3, node->mTransformation.c4,
node->mTransformation.d1, node->mTransformation.d2, node->mTransformation.d3, node->mTransformation.d4);
transformMatrix.Transpose();
transformMatrix.InverseAffine();
joint->SetInverseBindMatrix(transformMatrix);
}
}
for (unsigned int i = 0; i < node->mNumChildren; ++i)
ProcessJoints(node->mChildren[i], skeleton, joints);
}
bool IsSupported(const std::string& extension)
{
std::string dotExt = '.' + extension;
return (aiIsExtensionSupported(dotExt.data()) == AI_TRUE);
}
Ternary CheckAnimation(Stream& /*stream*/, const AnimationParams& parameters)
{
bool skip;
if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip)
return Ternary_False;
return Ternary_Unknown;
}
AnimationRef LoadAnimation(Stream& stream, const AnimationParams& parameters)
{
std::string streamPath = stream.GetPath().generic_u8string();
FileIOUserdata userdata;
userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath;
userdata.originalStream = &stream;
aiFileIO fileIO;
fileIO.CloseProc = StreamCloser;
fileIO.OpenProc = StreamOpener;
fileIO.UserData = reinterpret_cast<char*>(&userdata);
unsigned int postProcess = aiProcess_CalcTangentSpace | aiProcess_Debone
| aiProcess_FindInvalidData | aiProcess_FixInfacingNormals
| aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals
| aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices
| aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded
| aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes
| aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials
| aiProcess_SortByPType | aiProcess_SplitLargeMeshes
| aiProcess_TransformUVCoords | aiProcess_Triangulate;
aiPropertyStore* properties = aiCreatePropertyStore();
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4);
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_RVC_FLAGS, ~aiComponent_ANIMATIONS);
const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, 0, &fileIO, properties);
aiReleasePropertyStore(properties);
if (!scene)
{
NazaraError("Assimp failed to import file: " + Nz::String(aiGetErrorString()));
return nullptr;
}
if (!scene->HasAnimations())
{
NazaraError("File has no animation");
return nullptr;
}
aiAnimation* animation = scene->mAnimations[0];
unsigned int maxFrameCount = 0;
for (unsigned int i = 0; i < animation->mNumChannels; ++i)
{
aiNodeAnim* nodeAnim = animation->mChannels[i];
maxFrameCount = std::max({ maxFrameCount, nodeAnim->mNumPositionKeys, nodeAnim->mNumRotationKeys, nodeAnim->mNumScalingKeys });
}
AnimationRef anim = Animation::New();
anim->CreateSkeletal(maxFrameCount, animation->mNumChannels);
Sequence sequence;
sequence.firstFrame = 0;
sequence.frameCount = maxFrameCount;
sequence.frameRate = animation->mTicksPerSecond;
anim->AddSequence(sequence);
SequenceJoint* sequenceJoints = anim->GetSequenceJoints();
Quaternionf rotationQuat = Quaternionf::Identity();
for (unsigned int i = 0; i < animation->mNumChannels; ++i)
{
aiNodeAnim* nodeAnim = animation->mChannels[i];
for (unsigned int j = 0; j < nodeAnim->mNumPositionKeys; ++j)
{
SequenceJoint& sequenceJoint = sequenceJoints[i*animation->mNumChannels + j];
aiQuaternion rotation = nodeAnim->mRotationKeys[j].mValue;
aiVector3D position = nodeAnim->mPositionKeys[j].mValue;
sequenceJoint.position = Vector3f(position.x, position.y, position.z);
sequenceJoint.rotation = Quaternionf(rotation.w, rotation.x, rotation.y, rotation.z);
sequenceJoint.scale.Set(1.f);
}
}
return anim;
}
Ternary CheckMesh(Stream& /*stream*/, const MeshParams& parameters)
{
bool skip;
if (parameters.custom.GetBooleanParameter("SkipAssimpLoader", &skip) && skip)
return Ternary_False;
return Ternary_Unknown;
}
MeshRef LoadMesh(Stream& stream, const MeshParams& parameters)
{
std::string streamPath = stream.GetPath().generic_u8string();
FileIOUserdata userdata;
userdata.originalFilePath = (!streamPath.empty()) ? streamPath.data() : StreamPath;
userdata.originalStream = &stream;
aiFileIO fileIO;
fileIO.CloseProc = StreamCloser;
fileIO.OpenProc = StreamOpener;
fileIO.UserData = reinterpret_cast<char*>(&userdata);
unsigned int postProcess = aiProcess_CalcTangentSpace | aiProcess_Debone
| aiProcess_FindInvalidData | aiProcess_FixInfacingNormals
| aiProcess_FlipWindingOrder | aiProcess_GenSmoothNormals
| aiProcess_GenUVCoords | aiProcess_JoinIdenticalVertices
| aiProcess_LimitBoneWeights | aiProcess_MakeLeftHanded
| aiProcess_OptimizeGraph | aiProcess_OptimizeMeshes
| aiProcess_RemoveComponent | aiProcess_RemoveRedundantMaterials
| aiProcess_SortByPType | aiProcess_SplitLargeMeshes
| aiProcess_TransformUVCoords | aiProcess_Triangulate;
if (parameters.optimizeIndexBuffers)
postProcess |= aiProcess_ImproveCacheLocality;
double smoothingAngle = 80.f;
parameters.custom.GetDoubleParameter("AssimpLoader_SmoothingAngle", &smoothingAngle);
long long triangleLimit = 1'000'000;
parameters.custom.GetIntegerParameter("AssimpLoader_TriangleLimit", &triangleLimit);
long long vertexLimit = 1'000'000;
parameters.custom.GetIntegerParameter("AssimpLoader_VertexLimit", &vertexLimit);
int excludedComponents = 0;
if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Color))
excludedComponents |= aiComponent_COLORS;
if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Normal))
excludedComponents |= aiComponent_NORMALS;
if (!parameters.vertexDeclaration->HasComponent(VertexComponent_Tangent))
excludedComponents |= aiComponent_TANGENTS_AND_BITANGENTS;
if (!parameters.vertexDeclaration->HasComponent(VertexComponent_TexCoord))
excludedComponents |= aiComponent_TEXCOORDS;
aiPropertyStore* properties = aiCreatePropertyStore();
aiSetImportPropertyFloat(properties, AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE, float(smoothingAngle));
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_LBW_MAX_WEIGHTS, 4);
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SBP_REMOVE, ~aiPrimitiveType_TRIANGLE); //< We only want triangles
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_TRIANGLE_LIMIT, int(triangleLimit));
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_SLM_VERTEX_LIMIT, int(vertexLimit));
aiSetImportPropertyInteger(properties, AI_CONFIG_PP_RVC_FLAGS, excludedComponents);
const aiScene* scene = aiImportFileExWithProperties(userdata.originalFilePath, postProcess, &fileIO, properties);
aiReleasePropertyStore(properties);
if (!scene)
{
NazaraError("Assimp failed to import file: " + Nz::String(aiGetErrorString()));
return nullptr;
}
std::set<Nz::String> joints;
bool animatedMesh = false;
if (parameters.animated)
{
for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx)
{
aiMesh* currentMesh = scene->mMeshes[meshIdx];
if (currentMesh->HasBones()) // Inline functions can be safely called
{
animatedMesh = true;
for (unsigned int boneIdx = 0; boneIdx < currentMesh->mNumBones; ++boneIdx)
joints.insert(currentMesh->mBones[boneIdx]->mName.C_Str());
}
}
}
MeshRef mesh = Mesh::New();
if (animatedMesh)
{
mesh->CreateSkeletal(UInt32(joints.size()));
Skeleton* skeleton = mesh->GetSkeleton();
// First, assign names
unsigned int jointIndex = 0;
for (const Nz::String& jointName : joints)
skeleton->GetJoint(jointIndex++)->SetName(jointName);
ProcessJoints(scene->mRootNode, skeleton, joints);
// aiMaterial index in scene => Material index and data in Mesh
std::unordered_map<unsigned int, std::pair<UInt32, ParameterList>> materials;
for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx)
{
aiMesh* iMesh = scene->mMeshes[meshIdx];
if (iMesh->HasBones())
{
// For now, process only skeletal meshes
}
unsigned int indexCount = iMesh->mNumFaces * 3;
unsigned int vertexCount = iMesh->mNumVertices;
// Index buffer
bool largeIndices = (vertexCount > std::numeric_limits<UInt16>::max());
IndexBufferRef indexBuffer = IndexBuffer::New(largeIndices, indexCount, parameters.storage, parameters.indexBufferFlags);
IndexMapper indexMapper(indexBuffer, BufferAccess_DiscardAndWrite);
IndexIterator index = indexMapper.begin();
for (unsigned int faceIdx = 0; faceIdx < iMesh->mNumFaces; ++faceIdx)
{
aiFace& face = iMesh->mFaces[faceIdx];
if (face.mNumIndices != 3)
NazaraWarning("Assimp plugin: This face is not a triangle!");
*index++ = face.mIndices[0];
*index++ = face.mIndices[1];
*index++ = face.mIndices[2];
}
indexMapper.Unmap();
// Make sure the normal/tangent matrix won't rescale our vectors
Nz::Matrix4f normalTangentMatrix = parameters.matrix;
if (normalTangentMatrix.HasScale())
normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale());
VertexBufferRef vertexBuffer = VertexBuffer::New(VertexDeclaration::Get(VertexLayout_XYZ_Normal_UV_Tangent_Skinning), vertexCount, parameters.storage, parameters.vertexBufferFlags | BufferUsage_Dynamic);
BufferMapper<VertexBuffer> vertexMapper(vertexBuffer, BufferAccess_ReadWrite);
SkeletalMeshVertex* vertices = static_cast<SkeletalMeshVertex*>(vertexMapper.GetPointer());
for (std::size_t vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
{
aiVector3D normal = iMesh->mNormals[vertexIdx];
aiVector3D position = iMesh->mVertices[vertexIdx];
aiVector3D tangent = iMesh->mTangents[vertexIdx];
aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx];
vertices[vertexIdx].weightCount = 0;
vertices[vertexIdx].normal = normalTangentMatrix.Transform({ normal.x, normal.y, normal.z }, 0.f);
vertices[vertexIdx].position = parameters.matrix * Vector3f(position.x, position.y, position.z);
vertices[vertexIdx].tangent = normalTangentMatrix.Transform({ tangent.x, tangent.y, tangent.z }, 0.f);
vertices[vertexIdx].uv = parameters.texCoordOffset + Vector2f(uv.x, uv.y) * parameters.texCoordScale;
}
for (unsigned int boneIdx = 0; boneIdx < iMesh->mNumBones; ++boneIdx)
{
aiBone* bone = iMesh->mBones[boneIdx];
for (unsigned int weightIdx = 0; weightIdx < bone->mNumWeights; ++weightIdx)
{
aiVertexWeight& vertexWeight = bone->mWeights[weightIdx];
SkeletalMeshVertex& vertex = vertices[vertexWeight.mVertexId];
std::size_t weightIndex = vertex.weightCount++;
vertex.jointIndexes[weightIndex] = boneIdx;
vertex.weights[weightIndex] = vertexWeight.mWeight;
}
}
// Submesh
SkeletalMeshRef subMesh = SkeletalMesh::New(vertexBuffer, indexBuffer);
subMesh->SetMaterialIndex(iMesh->mMaterialIndex);
auto matIt = materials.find(iMesh->mMaterialIndex);
if (matIt == materials.end())
{
ParameterList matData;
aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex];
auto ConvertColor = [&](const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey)
{
aiColor4D color;
if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS)
{
matData.SetParameter(colorKey, Color(static_cast<UInt8>(color.r * 255), static_cast<UInt8>(color.g * 255), static_cast<UInt8>(color.b * 255), static_cast<UInt8>(color.a * 255)));
}
};
auto ConvertTexture = [&](aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr)
{
aiString path;
aiTextureMapMode mapMode[3];
if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS)
{
matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string());
if (wrapKey)
{
SamplerWrap wrap = SamplerWrap_Default;
switch (mapMode[0])
{
case aiTextureMapMode_Clamp:
case aiTextureMapMode_Decal:
wrap = SamplerWrap_Clamp;
break;
case aiTextureMapMode_Mirror:
wrap = SamplerWrap_MirroredRepeat;
break;
case aiTextureMapMode_Wrap:
wrap = SamplerWrap_Repeat;
break;
default:
NazaraWarning("Assimp texture map mode 0x" + String::Number(mapMode[0], 16) + " not handled");
break;
}
matData.SetParameter(wrapKey, static_cast<long long>(wrap));
}
}
};
ConvertColor(AI_MATKEY_COLOR_AMBIENT, MaterialData::AmbientColor);
ConvertColor(AI_MATKEY_COLOR_DIFFUSE, MaterialData::DiffuseColor);
ConvertColor(AI_MATKEY_COLOR_SPECULAR, MaterialData::SpecularColor);
ConvertTexture(aiTextureType_DIFFUSE, MaterialData::DiffuseTexturePath, MaterialData::DiffuseWrap);
ConvertTexture(aiTextureType_EMISSIVE, MaterialData::EmissiveTexturePath);
ConvertTexture(aiTextureType_HEIGHT, MaterialData::HeightTexturePath);
ConvertTexture(aiTextureType_NORMALS, MaterialData::NormalTexturePath);
ConvertTexture(aiTextureType_OPACITY, MaterialData::AlphaTexturePath);
ConvertTexture(aiTextureType_SPECULAR, MaterialData::SpecularTexturePath, MaterialData::SpecularWrap);
aiString name;
if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS)
matData.SetParameter(MaterialData::Name, String(name.data, name.length));
int iValue;
if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS)
matData.SetParameter(MaterialData::FaceCulling, !iValue);
matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(UInt32(materials.size()), std::move(matData)))).first;
}
subMesh->SetMaterialIndex(matIt->first);
mesh->AddSubMesh(subMesh);
}
mesh->SetMaterialCount(std::max<UInt32>(UInt32(materials.size()), 1));
for (const auto& pair : materials)
mesh->SetMaterialData(pair.second.first, pair.second.second);
}
else
{
mesh->CreateStatic();
// aiMaterial index in scene => Material index and data in Mesh
std::unordered_map<unsigned int, std::pair<UInt32, ParameterList>> materials;
for (unsigned int meshIdx = 0; meshIdx < scene->mNumMeshes; ++meshIdx)
{
aiMesh* iMesh = scene->mMeshes[meshIdx];
if (!iMesh->HasBones()) // Don't process skeletal meshs
{
unsigned int indexCount = iMesh->mNumFaces * 3;
unsigned int vertexCount = iMesh->mNumVertices;
// Index buffer
bool largeIndices = (vertexCount > std::numeric_limits<UInt16>::max());
IndexBufferRef indexBuffer = IndexBuffer::New(largeIndices, indexCount, parameters.storage, parameters.indexBufferFlags);
IndexMapper indexMapper(indexBuffer, BufferAccess_DiscardAndWrite);
IndexIterator index = indexMapper.begin();
for (unsigned int faceIdx = 0; faceIdx < iMesh->mNumFaces; ++faceIdx)
{
aiFace& face = iMesh->mFaces[faceIdx];
if (face.mNumIndices != 3)
NazaraWarning("Assimp plugin: This face is not a triangle!");
*index++ = face.mIndices[0];
*index++ = face.mIndices[1];
*index++ = face.mIndices[2];
}
indexMapper.Unmap();
// Vertex buffer
// Make sure the normal/tangent matrix won't rescale our vectors
Nz::Matrix4f normalTangentMatrix = parameters.matrix;
if (normalTangentMatrix.HasScale())
normalTangentMatrix.ApplyScale(1.f / normalTangentMatrix.GetScale());
VertexBufferRef vertexBuffer = VertexBuffer::New(parameters.vertexDeclaration, vertexCount, parameters.storage, parameters.vertexBufferFlags);
VertexMapper vertexMapper(vertexBuffer, BufferAccess_DiscardAndWrite);
auto posPtr = vertexMapper.GetComponentPtr<Vector3f>(VertexComponent_Position);
for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
{
aiVector3D position = iMesh->mVertices[vertexIdx];
*posPtr++ = parameters.matrix * Vector3f(position.x, position.y, position.z);
}
if (auto normalPtr = vertexMapper.GetComponentPtr<Vector3f>(VertexComponent_Normal))
{
for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
{
aiVector3D normal = iMesh->mNormals[vertexIdx];
*normalPtr++ = normalTangentMatrix.Transform({normal.x, normal.y, normal.z}, 0.f);
}
}
bool generateTangents = false;
if (auto tangentPtr = vertexMapper.GetComponentPtr<Vector3f>(VertexComponent_Tangent))
{
if (iMesh->HasTangentsAndBitangents())
{
for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
{
aiVector3D tangent = iMesh->mTangents[vertexIdx];
*tangentPtr++ = normalTangentMatrix.Transform({tangent.x, tangent.y, tangent.z}, 0.f);
}
}
else
generateTangents = true;
}
if (auto uvPtr = vertexMapper.GetComponentPtr<Vector2f>(VertexComponent_TexCoord))
{
if (iMesh->HasTextureCoords(0))
{
for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
{
aiVector3D uv = iMesh->mTextureCoords[0][vertexIdx];
*uvPtr++ = parameters.texCoordOffset + Vector2f(uv.x, uv.y) * parameters.texCoordScale;
}
}
else
{
for (unsigned int vertexIdx = 0; vertexIdx < vertexCount; ++vertexIdx)
*uvPtr++ = Vector2f::Zero();
}
}
vertexMapper.Unmap();
// Submesh
StaticMeshRef subMesh = StaticMesh::New(vertexBuffer, indexBuffer);
subMesh->GenerateAABB();
subMesh->SetMaterialIndex(iMesh->mMaterialIndex);
if (generateTangents)
subMesh->GenerateTangents();
auto matIt = materials.find(iMesh->mMaterialIndex);
if (matIt == materials.end())
{
ParameterList matData;
aiMaterial* aiMat = scene->mMaterials[iMesh->mMaterialIndex];
auto ConvertColor = [&] (const char* aiKey, unsigned int aiType, unsigned int aiIndex, const char* colorKey)
{
aiColor4D color;
if (aiGetMaterialColor(aiMat, aiKey, aiType, aiIndex, &color) == aiReturn_SUCCESS)
{
matData.SetParameter(colorKey, Color(static_cast<UInt8>(color.r * 255), static_cast<UInt8>(color.g * 255), static_cast<UInt8>(color.b * 255), static_cast<UInt8>(color.a * 255)));
}
};
auto ConvertTexture = [&] (aiTextureType aiType, const char* textureKey, const char* wrapKey = nullptr)
{
aiString path;
aiTextureMapMode mapMode[3];
if (aiGetMaterialTexture(aiMat, aiType, 0, &path, nullptr, nullptr, nullptr, nullptr, &mapMode[0], nullptr) == aiReturn_SUCCESS)
{
matData.SetParameter(textureKey, (stream.GetDirectory() / std::string_view(path.data, path.length)).generic_u8string());
if (wrapKey)
{
SamplerWrap wrap = SamplerWrap_Default;
switch (mapMode[0])
{
case aiTextureMapMode_Clamp:
case aiTextureMapMode_Decal:
wrap = SamplerWrap_Clamp;
break;
case aiTextureMapMode_Mirror:
wrap = SamplerWrap_MirroredRepeat;
break;
case aiTextureMapMode_Wrap:
wrap = SamplerWrap_Repeat;
break;
default:
NazaraWarning("Assimp texture map mode 0x" + String::Number(mapMode[0], 16) + " not handled");
break;
}
matData.SetParameter(wrapKey, static_cast<long long>(wrap));
}
}
};
ConvertColor(AI_MATKEY_COLOR_AMBIENT, MaterialData::AmbientColor);
ConvertColor(AI_MATKEY_COLOR_DIFFUSE, MaterialData::DiffuseColor);
ConvertColor(AI_MATKEY_COLOR_SPECULAR, MaterialData::SpecularColor);
ConvertTexture(aiTextureType_DIFFUSE, MaterialData::DiffuseTexturePath, MaterialData::DiffuseWrap);
ConvertTexture(aiTextureType_EMISSIVE, MaterialData::EmissiveTexturePath);
ConvertTexture(aiTextureType_HEIGHT, MaterialData::HeightTexturePath);
ConvertTexture(aiTextureType_NORMALS, MaterialData::NormalTexturePath);
ConvertTexture(aiTextureType_OPACITY, MaterialData::AlphaTexturePath);
ConvertTexture(aiTextureType_SPECULAR, MaterialData::SpecularTexturePath, MaterialData::SpecularWrap);
aiString name;
if (aiGetMaterialString(aiMat, AI_MATKEY_NAME, &name) == aiReturn_SUCCESS)
matData.SetParameter(MaterialData::Name, String(name.data, name.length));
int iValue;
if (aiGetMaterialInteger(aiMat, AI_MATKEY_TWOSIDED, &iValue) == aiReturn_SUCCESS)
matData.SetParameter(MaterialData::FaceCulling, !iValue);
matIt = materials.insert(std::make_pair(iMesh->mMaterialIndex, std::make_pair(UInt32(materials.size()), std::move(matData)))).first;
}
subMesh->SetMaterialIndex(matIt->first);
mesh->AddSubMesh(subMesh);
}
mesh->SetMaterialCount(std::max<UInt32>(UInt32(materials.size()), 1));
for (const auto& pair : materials)
mesh->SetMaterialData(pair.second.first, pair.second.second);
}
if (parameters.center)
mesh->Recenter();
}
aiReleaseImport(scene);
return mesh;
}
extern "C"
{
NAZARA_EXPORT int PluginLoad()
{
Nz::AnimationLoader::RegisterLoader(IsSupported, CheckAnimation, LoadAnimation);
Nz::MeshLoader::RegisterLoader(IsSupported, CheckMesh, LoadMesh);
return 1;
}
NAZARA_EXPORT void PluginUnload()
{
Nz::AnimationLoader::RegisterLoader(IsSupported, CheckAnimation, LoadAnimation);
Nz::MeshLoader::UnregisterLoader(IsSupported, CheckMesh, LoadMesh);
}
}