NazaraEngine/src/Nazara/Renderer/Renderer.cpp

904 lines
22 KiB
C++

// Copyright (C) 2012 Jérôme Leclercq
// This file is part of the "Nazara Engine - Renderer module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Renderer/OpenGL.hpp> // Pour éviter une redéfinition de WIN32_LEAN_AND_MEAN
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Core/Color.hpp>
#include <Nazara/Core/Error.hpp>
#include <Nazara/Core/Log.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/Context.hpp>
#include <Nazara/Renderer/HardwareBuffer.hpp>
#include <Nazara/Renderer/RenderTarget.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/ShaderImpl.hpp>
#include <Nazara/Utility/BufferImpl.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/Utility.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <Nazara/Utility/VertexDeclaration.hpp>
#include <stdexcept>
#include <tuple>
#include <Nazara/Renderer/Debug.hpp>
namespace
{
///FIXME: Solution temporaire pour plus de facilité
enum nzMatrixCombination
{
nzMatrixCombination_ViewProj = nzMatrixType_Max+1,
nzMatrixCombination_WorldView,
nzMatrixCombination_WorldViewProj,
nzMatrixCombination_Max = nzMatrixCombination_WorldViewProj
};
NzBufferImpl* HardwareBufferFunction(NzBuffer* parent, nzBufferType type)
{
return new NzHardwareBuffer(parent, type);
}
constexpr unsigned int totalMatrixCount = nzMatrixCombination_Max+1;
using VAO_Key = std::tuple<const NzContext*, const NzIndexBuffer*, const NzVertexBuffer*, const NzVertexDeclaration*>;
std::map<VAO_Key, unsigned int> s_vaos;
NzMatrix4f s_matrix[totalMatrixCount];
int s_matrixLocation[totalMatrixCount];
bool s_matrixUpdated[totalMatrixCount];
nzRendererComparison s_stencilCompare;
nzStencilOperation s_stencilFail;
nzStencilOperation s_stencilPass;
nzStencilOperation s_stencilZFail;
nzUInt32 s_stencilMask;
const NzIndexBuffer* s_indexBuffer;
NzRenderTarget* s_target;
NzShader* s_shader;
const NzVertexBuffer* s_vertexBuffer;
const NzVertexDeclaration* s_vertexDeclaration;
bool s_vaoUpdated;
bool s_capabilities[nzRendererCap_Max+1];
bool s_stencilFuncUpdated;
bool s_stencilOpUpdated;
unsigned int s_maxAnisotropyLevel;
unsigned int s_maxRenderTarget;
unsigned int s_maxTextureUnit;
unsigned int s_stencilReference;
}
void NzRenderer::Clear(unsigned long flags)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
if (flags)
{
GLenum mask = 0;
if (flags & nzRendererClear_Color)
mask |= GL_COLOR_BUFFER_BIT;
if (flags & nzRendererClear_Depth)
mask |= GL_DEPTH_BUFFER_BIT;
if (flags & nzRendererClear_Stencil)
mask |= GL_STENCIL_BUFFER_BIT;
glClear(mask);
}
}
void NzRenderer::DrawIndexedPrimitives(nzPrimitiveType primitive, unsigned int firstIndex, unsigned int indexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_indexBuffer)
{
NazaraError("No index buffer");
return;
}
#endif
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
if (s_indexBuffer->IsSequential())
glDrawArrays(NzOpenGL::PrimitiveType[primitive], s_indexBuffer->GetStartIndex(), s_indexBuffer->GetIndexCount());
else
{
nzUInt8 indexSize = s_indexBuffer->GetIndexSize();
GLenum type;
switch (indexSize)
{
case 1:
type = GL_UNSIGNED_BYTE;
break;
case 2:
type = GL_UNSIGNED_SHORT;
break;
case 4:
type = GL_UNSIGNED_INT;
break;
default:
NazaraError("Invalid index size (" + NzString::Number(indexSize) + ')');
return;
}
glDrawElements(NzOpenGL::PrimitiveType[primitive], indexCount, type, reinterpret_cast<const nzUInt8*>(s_indexBuffer->GetPointer()) + firstIndex*indexSize);
}
}
void NzRenderer::DrawPrimitives(nzPrimitiveType primitive, unsigned int firstVertex, unsigned int vertexCount)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
if (!EnsureStateUpdate())
{
NazaraError("Failed to update states");
return;
}
glDrawArrays(NzOpenGL::PrimitiveType[primitive], firstVertex, vertexCount);
}
void NzRenderer::Enable(nzRendererParameter parameter, bool enable)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
switch (parameter)
{
case nzRendererParameter_ColorWrite:
glColorMask(enable, enable, enable, enable);
break;
case nzRendererParameter_DepthWrite:
glDepthMask(enable);
break;
default:
if (enable)
glEnable(NzOpenGL::RendererParameter[parameter]);
else
glDisable(NzOpenGL::RendererParameter[parameter]);
break;
}
}
/*
NzMatrix4f NzRenderer::GetMatrix(nzMatrixCombination combination)
{
///FIXME: Duplication
switch (combination)
{
case nzMatrixCombination_ViewProj:
if (!s_matrixUpdated[nzMatrixCombination_ViewProj])
{
s_matrix[nzMatrixCombination_ViewProj] = s_matrix[nzMatrixType_View] * s_matrix[nzMatrixType_Projection];
s_matrixUpdated[nzMatrixCombination_ViewProj] = true;
}
break;
case nzMatrixCombination_WorldView:
if (!s_matrixUpdated[nzMatrixCombination_WorldView])
{
s_matrix[nzMatrixCombination_WorldView] = NzMatrix4f::ConcatenateAffine(s_matrix[nzMatrixType_World], s_matrix[nzMatrixType_View]);
s_matrixUpdated[nzMatrixCombination_WorldView] = true;
}
break;
case nzMatrixCombination_WorldViewProj:
if (!s_matrixUpdated[nzMatrixCombination_WorldViewProj])
{
s_matrix[nzMatrixCombination_WorldViewProj] = s_matrix[nzMatrixCombination_WorldView] * s_matrix[nzMatrixType_Projection];
s_matrixUpdated[nzMatrixCombination_WorldViewProj] = true;
}
break;
}
return m_matrix[combination];
}
*/
NzMatrix4f NzRenderer::GetMatrix(nzMatrixType type)
{
return s_matrix[type];
}
unsigned int NzRenderer::GetMaxAnisotropyLevel()
{
return s_maxAnisotropyLevel;
}
unsigned int NzRenderer::GetMaxRenderTargets()
{
return s_maxRenderTarget;
}
unsigned int NzRenderer::GetMaxTextureUnits()
{
return s_maxTextureUnit;
}
NzShader* NzRenderer::GetShader()
{
return s_shader;
}
NzRenderTarget* NzRenderer::GetTarget()
{
return s_target;
}
NzRectui NzRenderer::GetViewport()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return NzRectui();
}
#endif
GLint params[4];
glGetIntegerv(GL_VIEWPORT, &params[0]);
return NzRectui(params[0], params[1], params[2], params[3]);
}
bool NzRenderer::HasCapability(nzRendererCap capability)
{
return s_capabilities[capability];
}
bool NzRenderer::Initialize()
{
if (s_moduleReferenceCouter++ != 0)
return true; // Déjà initialisé
// Initialisation des dépendances
if (!NzUtility::Initialize())
{
NazaraError("Failed to initialize utility module");
return false;
}
// Initialisation du module
if (!NzOpenGL::Initialize())
{
NazaraError("Failed to initialize OpenGL");
return false;
}
NzContext::EnsureContext();
for (unsigned int i = 0; i < totalMatrixCount; ++i)
{
s_matrix[i].MakeIdentity();
s_matrixLocation[i] = -1;
s_matrixUpdated[i] = false;
}
s_indexBuffer = nullptr;
s_shader = nullptr;
s_stencilCompare = nzRendererComparison_Always;
s_stencilFail = nzStencilOperation_Keep;
s_stencilFuncUpdated = true;
s_stencilMask = 0xFFFFFFFF;
s_stencilOpUpdated = true;
s_stencilPass = nzStencilOperation_Keep;
s_stencilReference = 0;
s_stencilZFail = nzStencilOperation_Keep;
s_target = nullptr;
s_vaoUpdated = false;
s_vertexBuffer = nullptr;
s_vertexDeclaration = nullptr;
// Récupération des capacités d'OpenGL
s_capabilities[nzRendererCap_AnisotropicFilter] = NzOpenGL::IsSupported(nzOpenGLExtension_AnisotropicFilter);
s_capabilities[nzRendererCap_FP64] = NzOpenGL::IsSupported(nzOpenGLExtension_FP64);
s_capabilities[nzRendererCap_HardwareBuffer] = true; // Natif depuis OpenGL 1.5
// MultipleRenderTargets (Techniquement natif depuis OpenGL 2.0 mais inutile sans glBindFragDataLocation)
s_capabilities[nzRendererCap_MultipleRenderTargets] = (glBindFragDataLocation != nullptr);
s_capabilities[nzRendererCap_OcclusionQuery] = true; // Natif depuis OpenGL 1.5
s_capabilities[nzRendererCap_PixelBufferObject] = NzOpenGL::IsSupported(nzOpenGLExtension_PixelBufferObject);
s_capabilities[nzRendererCap_RenderTexture] = NzOpenGL::IsSupported(nzOpenGLExtension_FrameBufferObject);
s_capabilities[nzRendererCap_Texture3D] = true; // Natif depuis OpenGL 1.2
s_capabilities[nzRendererCap_TextureCubemap] = true; // Natif depuis OpenGL 1.3
s_capabilities[nzRendererCap_TextureMulti] = true; // Natif depuis OpenGL 1.3
s_capabilities[nzRendererCap_TextureNPOT] = true; // Natif depuis OpenGL 2.0
if (s_capabilities[nzRendererCap_AnisotropicFilter])
{
GLint maxAnisotropy;
glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropy);
s_maxAnisotropyLevel = static_cast<unsigned int>(maxAnisotropy);
}
else
s_maxAnisotropyLevel = 1;
if (s_capabilities[nzRendererCap_MultipleRenderTargets])
{
GLint maxDrawBuffers;
glGetIntegerv(GL_MAX_DRAW_BUFFERS, &maxDrawBuffers);
GLint maxColorAttachments;
glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS, &maxColorAttachments);
s_maxRenderTarget = static_cast<unsigned int>(std::min(maxColorAttachments, maxDrawBuffers));
}
else
s_maxRenderTarget = 1;
if (s_capabilities[nzRendererCap_TextureMulti])
{
GLint maxTextureUnits;
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
GLint maxVertexAttribs;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
// Impossible de binder plus de texcoords que d'attributes (en sachant qu'un certain nombre est déjà pris par les autres attributs)
s_maxTextureUnit = static_cast<unsigned int>(std::min(maxTextureUnits, maxVertexAttribs-NzOpenGL::AttributeIndex[nzElementUsage_TexCoord]));
}
else
s_maxTextureUnit = 1;
NzBuffer::SetBufferFunction(nzBufferStorage_Hardware, HardwareBufferFunction);
NazaraNotice("Initialized: Renderer module");
return true;
}
bool NzRenderer::IsInitialized()
{
return s_moduleReferenceCouter != 0;
}
void NzRenderer::SetBlendFunc(nzBlendFunc src, nzBlendFunc dest)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glBlendFunc(NzOpenGL::BlendFunc[src], NzOpenGL::BlendFunc[dest]);
}
void NzRenderer::SetClearColor(const NzColor& color)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(color.r/255.f, color.g/255.f, color.b/255.f, color.a/255.f);
}
void NzRenderer::SetClearColor(nzUInt8 r, nzUInt8 g, nzUInt8 b, nzUInt8 a)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearColor(r/255.f, g/255.f, b/255.f, a/255.f);
}
void NzRenderer::SetClearDepth(double depth)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearDepth(depth);
}
void NzRenderer::SetClearStencil(unsigned int value)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glClearStencil(value);
}
void NzRenderer::SetFaceCulling(nzFaceCulling cullingMode)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glCullFace(NzOpenGL::FaceCulling[cullingMode]);
}
void NzRenderer::SetFaceFilling(nzFaceFilling fillingMode)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
glPolygonMode(GL_FRONT_AND_BACK, NzOpenGL::FaceFilling[fillingMode]);
}
bool NzRenderer::SetIndexBuffer(const NzIndexBuffer* indexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (indexBuffer && !indexBuffer->IsHardware() && !indexBuffer->IsSequential())
{
NazaraError("Buffer must be hardware");
return false;
}
#endif
if (s_indexBuffer != indexBuffer)
{
s_indexBuffer = indexBuffer;
s_vaoUpdated = false;
}
return true;
}
void NzRenderer::SetMatrix(nzMatrixType type, const NzMatrix4f& matrix)
{
s_matrix[type] = matrix;
// Invalidation des combinaisons
switch (type)
{
case nzMatrixType_View:
case nzMatrixType_World:
s_matrixUpdated[nzMatrixCombination_WorldView] = false;
case nzMatrixType_Projection:
s_matrixUpdated[nzMatrixCombination_WorldViewProj] = false;
s_matrixUpdated[nzMatrixCombination_ViewProj] = false;
break;
}
}
bool NzRenderer::SetShader(NzShader* shader)
{
if (s_shader == shader)
return true;
if (s_shader)
s_shader->m_impl->Unbind();
if (shader)
{
#if NAZARA_RENDERER_SAFE
if (!shader->IsCompiled())
{
NazaraError("Shader is not compiled");
shader = nullptr;
return false;
}
#endif
if (!shader->m_impl->Bind())
{
NazaraError("Failed to bind shader");
shader = nullptr;
return false;
}
// Récupération des indices des variables uniformes (-1 si la variable n'existe pas)
s_matrixLocation[nzMatrixType_Projection] = shader->GetUniformLocation("ProjMatrix");
s_matrixLocation[nzMatrixType_View] = shader->GetUniformLocation("ViewMatrix");
s_matrixLocation[nzMatrixType_World] = shader->GetUniformLocation("WorldMatrix");
s_matrixLocation[nzMatrixCombination_ViewProj] = shader->GetUniformLocation("ViewProjMatrix");
s_matrixLocation[nzMatrixCombination_WorldView] = shader->GetUniformLocation("WorldViewMatrix");
s_matrixLocation[nzMatrixCombination_WorldViewProj] = shader->GetUniformLocation("WorldViewProjMatrix");
}
s_shader = shader;
return true;
}
void NzRenderer::SetStencilCompareFunction(nzRendererComparison compareFunc)
{
if (compareFunc != s_stencilCompare)
{
s_stencilCompare = compareFunc;
s_stencilFuncUpdated = false;
}
}
void NzRenderer::SetStencilFailOperation(nzStencilOperation failOperation)
{
if (failOperation != s_stencilFail)
{
s_stencilFail = failOperation;
s_stencilOpUpdated = false;
}
}
void NzRenderer::SetStencilMask(nzUInt32 mask)
{
if (mask != s_stencilMask)
{
s_stencilMask = mask;
s_stencilFuncUpdated = false;
}
}
void NzRenderer::SetStencilPassOperation(nzStencilOperation passOperation)
{
if (passOperation != s_stencilPass)
{
s_stencilPass = passOperation;
s_stencilOpUpdated = false;
}
}
void NzRenderer::SetStencilReferenceValue(unsigned int refValue)
{
if (refValue != s_stencilReference)
{
s_stencilReference = refValue;
s_stencilFuncUpdated = false;
}
}
void NzRenderer::SetStencilZFailOperation(nzStencilOperation zfailOperation)
{
if (zfailOperation != s_stencilZFail)
{
s_stencilZFail = zfailOperation;
s_stencilOpUpdated = false;
}
}
bool NzRenderer::SetTarget(NzRenderTarget* target)
{
if (s_target == target)
return true;
if (s_target)
{
if (!s_target->HasContext())
s_target->Desactivate();
s_target = nullptr;
}
if (target)
{
#if NAZARA_RENDERER_SAFE
if (!target->IsRenderable())
{
NazaraError("Target not renderable");
return false;
}
#endif
if (!target->Activate())
{
NazaraError("Failed to activate target");
return false;
}
s_target = target;
}
return true;
}
bool NzRenderer::SetVertexBuffer(const NzVertexBuffer* vertexBuffer)
{
#if NAZARA_RENDERER_SAFE
if (vertexBuffer && !vertexBuffer->IsHardware())
{
NazaraError("Buffer must be hardware");
return false;
}
#endif
if (s_vertexBuffer != vertexBuffer)
{
s_vertexBuffer = vertexBuffer;
s_vaoUpdated = false;
}
return true;
}
bool NzRenderer::SetVertexDeclaration(const NzVertexDeclaration* vertexDeclaration)
{
if (s_vertexDeclaration != vertexDeclaration)
{
s_vertexDeclaration = vertexDeclaration;
s_vaoUpdated = false;
}
return true;
}
void NzRenderer::SetViewport(const NzRectui& viewport)
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return;
}
#endif
unsigned int height = s_target->GetHeight();
#if NAZARA_RENDERER_SAFE
if (!s_target)
{
NazaraError("Renderer has no target");
return;
}
unsigned int width = s_target->GetWidth();
if (viewport.x+viewport.width > width || viewport.y+viewport.height > height)
{
NazaraError("Rectangle dimensions are out of bounds");
return;
}
#endif
glViewport(viewport.x, height-viewport.height-viewport.y, viewport.width, viewport.height);
glScissor(viewport.x, height-viewport.height-viewport.y, viewport.width, viewport.height);
}
void NzRenderer::Uninitialize()
{
if (--s_moduleReferenceCouter != 0)
return; // Encore utilisé
// Libération du module
NzContext::EnsureContext();
// Libération des VAOs
for (auto it = s_vaos.begin(); it != s_vaos.end(); ++it)
{
GLuint vao = static_cast<GLuint>(it->second);
glDeleteVertexArrays(1, &vao);
}
NzOpenGL::Uninitialize();
NazaraNotice("Uninitialized: Renderer module");
// Libération des dépendances
NzUtility::Uninitialize();
}
bool NzRenderer::EnsureStateUpdate()
{
#ifdef NAZARA_DEBUG
if (NzContext::GetCurrent() == nullptr)
{
NazaraError("No active context");
return false;
}
#endif
#if NAZARA_RENDERER_SAFE
if (!s_shader)
{
NazaraError("No shader");
return false;
}
#endif
// Il est plus rapide d'opérer sur l'implémentation du shader directement
NzShaderImpl* shaderImpl = s_shader->m_impl;
if (!shaderImpl->BindTextures())
NazaraWarning("Failed to bind textures");
for (unsigned int i = 0; i <= nzMatrixType_Max; ++i)
{
if (!s_matrixUpdated[i])
{
shaderImpl->SendMatrix(s_matrixLocation[i], s_matrix[i]);
s_matrixUpdated[i] = true;
}
}
// Cas spéciaux car il faut recalculer la matrice
if (!s_matrixUpdated[nzMatrixCombination_ViewProj])
{
s_matrix[nzMatrixCombination_ViewProj] = s_matrix[nzMatrixType_View] * s_matrix[nzMatrixType_Projection];
shaderImpl->SendMatrix(s_matrixLocation[nzMatrixCombination_ViewProj], s_matrix[nzMatrixCombination_ViewProj]);
s_matrixUpdated[nzMatrixCombination_ViewProj] = true;
}
if (!s_matrixUpdated[nzMatrixCombination_WorldView])
{
s_matrix[nzMatrixCombination_WorldView] = NzMatrix4f::ConcatenateAffine(s_matrix[nzMatrixType_World], s_matrix[nzMatrixType_View]);
shaderImpl->SendMatrix(s_matrixLocation[nzMatrixCombination_WorldView], s_matrix[nzMatrixCombination_WorldView]);
s_matrixUpdated[nzMatrixCombination_WorldView] = true;
}
if (!s_matrixUpdated[nzMatrixCombination_WorldViewProj])
{
s_matrix[nzMatrixCombination_WorldViewProj] = s_matrix[nzMatrixCombination_WorldView] * s_matrix[nzMatrixType_Projection];
shaderImpl->SendMatrix(s_matrixLocation[nzMatrixCombination_WorldViewProj], s_matrix[nzMatrixCombination_WorldViewProj]);
s_matrixUpdated[nzMatrixCombination_WorldViewProj] = true;
}
if (!s_stencilFuncUpdated)
{
glStencilFunc(NzOpenGL::RendererComparison[s_stencilCompare], s_stencilReference, s_stencilMask);
s_stencilFuncUpdated = true;
}
if (!s_stencilOpUpdated)
{
glStencilOp(NzOpenGL::StencilOperation[s_stencilFail], NzOpenGL::StencilOperation[s_stencilZFail], NzOpenGL::StencilOperation[s_stencilPass]);
s_stencilOpUpdated = true;
}
if (!s_vaoUpdated)
{
#if NAZARA_RENDERER_SAFE
if (!s_vertexBuffer)
{
NazaraError("No vertex buffer");
return false;
}
if (!s_vertexDeclaration)
{
NazaraError("No vertex declaration");
return false;
}
#endif
static const bool vaoSupported = NzOpenGL::IsSupported(nzOpenGLExtension_VertexArrayObject);
bool update;
GLuint vao;
// Si les VAOs sont supportés, on entoure nos appels par ceux-ci
if (vaoSupported)
{
// On recherche si un VAO existe déjà avec notre configuration
// Note: Les VAOs ne sont pas partagés entre les contextes, ces derniers font donc partie de notre configuration
auto key = std::make_tuple(NzContext::GetCurrent(), s_indexBuffer, s_vertexBuffer, s_vertexDeclaration);
auto it = s_vaos.find(key);
if (it == s_vaos.end())
{
// On créé notre VAO
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// On l'ajoute à notre liste
s_vaos.insert(std::make_pair(key, static_cast<unsigned int>(vao)));
// Et on indique qu'on veut le programmer
update = true;
}
else
{
// Notre VAO existe déjà, il est donc inutile de le reprogrammer
vao = it->second;
update = false;
}
}
else
update = true; // Fallback si les VAOs ne sont pas supportés
if (update)
{
NzHardwareBuffer* vertexBufferImpl = static_cast<NzHardwareBuffer*>(s_vertexBuffer->GetBuffer()->GetImpl());
vertexBufferImpl->Bind();
const nzUInt8* buffer = reinterpret_cast<const nzUInt8*>(s_vertexBuffer->GetPointer());
unsigned int stride = s_vertexDeclaration->GetStride(nzElementStream_VertexData);
for (unsigned int i = 0; i <= nzElementUsage_Max; ++i)
{
const NzVertexElement* element = s_vertexDeclaration->GetElement(nzElementStream_VertexData, static_cast<nzElementUsage>(i));
if (element)
{
glEnableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
glVertexAttribPointer(NzOpenGL::AttributeIndex[i],
NzVertexDeclaration::GetElementCount(element->type),
NzOpenGL::ElementType[element->type],
(element->type == nzElementType_Color) ? GL_TRUE : GL_FALSE,
stride,
&buffer[element->offset]);
}
else
glDisableVertexAttribArray(NzOpenGL::AttributeIndex[i]);
}
if (s_indexBuffer)
{
NzHardwareBuffer* indexBufferImpl = static_cast<NzHardwareBuffer*>(s_indexBuffer->GetBuffer()->GetImpl());
indexBufferImpl->Bind();
}
}
if (vaoSupported)
{
// Si nous venons de définir notre VAO, nous devons le débinder pour indiquer la fin de sa construction
if (update)
glBindVertexArray(0);
// Nous (re)bindons le VAO pour définir les attributs de vertice
glBindVertexArray(vao);
}
s_vaoUpdated = true;
}
return true;
}
unsigned int NzRenderer::s_moduleReferenceCouter = 0;