NazaraEngine/src/Nazara/Physics3D/Collider3D.cpp

492 lines
14 KiB
C++

// Copyright (C) 2020 Jérôme Leclercq
// This file is part of the "Nazara Engine - Physics 3D module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics3D/Collider3D.hpp>
#include <Nazara/Core/PrimitiveList.hpp>
#include <Nazara/Physics3D/PhysWorld3D.hpp>
#include <Nazara/Utility/IndexBuffer.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/VertexBuffer.hpp>
#include <newton/Newton.h>
#include <Nazara/Physics3D/Debug.hpp>
namespace Nz
{
namespace
{
std::shared_ptr<Collider3D> CreateGeomFromPrimitive(const Primitive& primitive)
{
switch (primitive.type)
{
case PrimitiveType::Box:
return std::make_shared<BoxCollider3D>(primitive.box.lengths, primitive.matrix);
case PrimitiveType::Cone:
return std::make_shared<ConeCollider3D>(primitive.cone.length, primitive.cone.radius, primitive.matrix);
case PrimitiveType::Plane:
return std::make_shared<BoxCollider3D>(Vector3f(primitive.plane.size.x, 0.01f, primitive.plane.size.y), primitive.matrix);
///TODO: PlaneGeom?
case PrimitiveType::Sphere:
return std::make_shared<SphereCollider3D>(primitive.sphere.size, primitive.matrix.GetTranslation());
}
NazaraError("Primitive type not handled (0x" + NumberToString(UnderlyingCast(primitive.type), 16) + ')');
return std::shared_ptr<Collider3D>();
}
}
Collider3D::~Collider3D()
{
for (auto& pair : m_handles)
NewtonDestroyCollision(pair.second);
}
Boxf Collider3D::ComputeAABB(const Vector3f& translation, const Quaternionf& rotation, const Vector3f& scale) const
{
return ComputeAABB(Matrix4f::Transform(translation, rotation), scale);
}
Boxf Collider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f min, max;
// Check for existing collision handles, and create a temporary one if none is available
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonCollisionCalculateAABB(collision, offsetMatrix, &min.x, &max.x);
}
NewtonDestroyCollision(collision);
}
else
NewtonCollisionCalculateAABB(m_handles.begin()->second, offsetMatrix, &min.x, &max.x);
return Boxf(scale * min, scale * max);
}
void Collider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
float inertiaMatrix[3];
float origin[3];
// Check for existing collision handles, and create a temporary one if none is available
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonConvexCollisionCalculateInertialMatrix(collision, inertiaMatrix, origin);
}
NewtonDestroyCollision(collision);
}
else
NewtonConvexCollisionCalculateInertialMatrix(m_handles.begin()->second, inertiaMatrix, origin);
if (inertia)
inertia->Set(inertiaMatrix);
if (center)
center->Set(origin);
}
float Collider3D::ComputeVolume() const
{
float volume;
// Check for existing collision handles, and create a temporary one if none is available
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
volume = NewtonConvexCollisionCalculateVolume(collision);
}
NewtonDestroyCollision(collision);
}
else
volume = NewtonConvexCollisionCalculateVolume(m_handles.begin()->second);
return volume;
}
void Collider3D::ForEachPolygon(const std::function<void(const Vector3f* vertices, std::size_t vertexCount)>& callback) const
{
auto newtCallback = [](void* const userData, int vertexCount, const dFloat* const faceArray, int /*faceId*/)
{
static_assert(sizeof(Vector3f) == 3 * sizeof(float), "Vector3 is expected to contain 3 floats without padding");
const auto& cb = *static_cast<std::add_pointer_t<decltype(callback)>>(userData);
cb(reinterpret_cast<const Vector3f*>(faceArray), vertexCount);
};
// Check for existing collision handles, and create a temporary one if none is available
if (m_handles.empty())
{
PhysWorld3D world;
NewtonCollision* collision = CreateHandle(&world);
{
NewtonCollisionForEachPolygonDo(collision, Nz::Matrix4f::Identity(), newtCallback, const_cast<void*>(static_cast<const void*>(&callback))); //< This isn't that bad; pointer will not be used for writing
}
NewtonDestroyCollision(collision);
}
else
NewtonCollisionForEachPolygonDo(m_handles.begin()->second, Nz::Matrix4f::Identity(), newtCallback, const_cast<void*>(static_cast<const void*>(&callback))); //< This isn't that bad; pointer will not be used for writing
}
std::shared_ptr<StaticMesh> Collider3D::GenerateMesh() const
{
std::vector<Nz::Vector3f> colliderVertices;
std::vector<Nz::UInt16> colliderIndices;
// Generate a line list
ForEachPolygon([&](const Nz::Vector3f* vertices, std::size_t vertexCount)
{
Nz::UInt16 firstIndex = colliderVertices.size();
for (std::size_t i = 0; i < vertexCount; ++i)
colliderVertices.push_back(vertices[i]);
for (std::size_t i = 1; i < vertexCount; ++i)
{
colliderIndices.push_back(firstIndex + i - 1);
colliderIndices.push_back(firstIndex + i);
}
if (vertexCount > 2)
{
colliderIndices.push_back(firstIndex + vertexCount - 1);
colliderIndices.push_back(firstIndex);
}
});
std::shared_ptr<Nz::VertexBuffer> colliderVB = std::make_shared<Nz::VertexBuffer>(Nz::VertexDeclaration::Get(Nz::VertexLayout::XYZ), colliderVertices.size(), Nz::DataStorage::Software, 0);
colliderVB->Fill(colliderVertices.data(), 0, colliderVertices.size());
std::shared_ptr<Nz::IndexBuffer> colliderIB = std::make_shared<Nz::IndexBuffer>(false, colliderIndices.size(), Nz::DataStorage::Software, 0);
colliderIB->Fill(colliderIndices.data(), 0, colliderIndices.size());
std::shared_ptr<Nz::StaticMesh> colliderSubMesh = std::make_shared<Nz::StaticMesh>(std::move(colliderVB), std::move(colliderIB));
colliderSubMesh->GenerateAABB();
colliderSubMesh->SetPrimitiveMode(Nz::PrimitiveMode::LineList);
return colliderSubMesh;
}
NewtonCollision* Collider3D::GetHandle(PhysWorld3D* world) const
{
auto it = m_handles.find(world);
if (it == m_handles.end())
it = m_handles.insert(std::make_pair(world, CreateHandle(world))).first;
return it->second;
}
std::shared_ptr<Collider3D> Collider3D::Build(const PrimitiveList& list)
{
std::size_t primitiveCount = list.GetSize();
if (primitiveCount > 1)
{
std::vector<std::shared_ptr<Collider3D>> geoms(primitiveCount);
for (unsigned int i = 0; i < primitiveCount; ++i)
geoms[i] = CreateGeomFromPrimitive(list.GetPrimitive(i));
return std::make_shared<CompoundCollider3D>(std::move(geoms));
}
else if (primitiveCount > 0)
return CreateGeomFromPrimitive(list.GetPrimitive(0));
else
return std::make_shared<NullCollider3D>();
}
/********************************** BoxCollider3D **********************************/
BoxCollider3D::BoxCollider3D(const Vector3f& lengths, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_lengths(lengths)
{
}
BoxCollider3D::BoxCollider3D(const Vector3f& lengths, const Vector3f& translation, const Quaternionf& rotation) :
BoxCollider3D(lengths, Matrix4f::Transform(translation, rotation))
{
}
Boxf BoxCollider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f halfLengths(m_lengths * 0.5f);
Boxf aabb(-halfLengths.x, -halfLengths.y, -halfLengths.z, m_lengths.x, m_lengths.y, m_lengths.z);
aabb.Transform(offsetMatrix, true);
aabb *= scale;
return aabb;
}
float BoxCollider3D::ComputeVolume() const
{
return m_lengths.x * m_lengths.y * m_lengths.z;
}
Vector3f BoxCollider3D::GetLengths() const
{
return m_lengths;
}
ColliderType3D BoxCollider3D::GetType() const
{
return ColliderType3D::Box;
}
NewtonCollision* BoxCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateBox(world->GetHandle(), m_lengths.x, m_lengths.y, m_lengths.z, 0, m_matrix);
}
/******************************** CapsuleCollider3D ********************************/
CapsuleCollider3D::CapsuleCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CapsuleCollider3D::CapsuleCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CapsuleCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CapsuleCollider3D::GetLength() const
{
return m_length;
}
float CapsuleCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D CapsuleCollider3D::GetType() const
{
return ColliderType3D::Capsule;
}
NewtonCollision* CapsuleCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCapsule(world->GetHandle(), m_radius, m_radius, m_length, 0, m_matrix);
}
/******************************* CompoundCollider3D ********************************/
CompoundCollider3D::CompoundCollider3D(std::vector<std::shared_ptr<Collider3D>> geoms) :
m_geoms(std::move(geoms))
{
}
const std::vector<std::shared_ptr<Collider3D>>& CompoundCollider3D::GetGeoms() const
{
return m_geoms;
}
ColliderType3D CompoundCollider3D::GetType() const
{
return ColliderType3D::Compound;
}
NewtonCollision* CompoundCollider3D::CreateHandle(PhysWorld3D* world) const
{
NewtonCollision* compoundCollision = NewtonCreateCompoundCollision(world->GetHandle(), 0);
NewtonCompoundCollisionBeginAddRemove(compoundCollision);
for (const std::shared_ptr<Collider3D>& geom : m_geoms)
{
if (geom->GetType() == ColliderType3D::Compound)
{
CompoundCollider3D& compoundGeom = static_cast<CompoundCollider3D&>(*geom);
for (const std::shared_ptr<Collider3D>& piece : compoundGeom.GetGeoms())
NewtonCompoundCollisionAddSubCollision(compoundCollision, piece->GetHandle(world));
}
else
NewtonCompoundCollisionAddSubCollision(compoundCollision, geom->GetHandle(world));
}
NewtonCompoundCollisionEndAddRemove(compoundCollision);
return compoundCollision;
}
/********************************* ConeCollider3D **********************************/
ConeCollider3D::ConeCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
ConeCollider3D::ConeCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
ConeCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float ConeCollider3D::GetLength() const
{
return m_length;
}
float ConeCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D ConeCollider3D::GetType() const
{
return ColliderType3D::Cone;
}
NewtonCollision* ConeCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCone(world->GetHandle(), m_radius, m_length, 0, m_matrix);
}
/****************************** ConvexCollider3D *******************************/
ConvexCollider3D::ConvexCollider3D(SparsePtr<const Vector3f> vertices, unsigned int vertexCount, float tolerance, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_tolerance(tolerance)
{
m_vertices.resize(vertexCount);
if (vertices.GetStride() != sizeof(Vector3f))
{
for (unsigned int i = 0; i < vertexCount; ++i)
m_vertices[i] = *vertices++;
}
else // Fast path
std::memcpy(m_vertices.data(), vertices.GetPtr(), vertexCount*sizeof(Vector3f));
}
ConvexCollider3D::ConvexCollider3D(SparsePtr<const Vector3f> vertices, unsigned int vertexCount, float tolerance, const Vector3f& translation, const Quaternionf& rotation) :
ConvexCollider3D(vertices, vertexCount, tolerance, Matrix4f::Transform(translation, rotation))
{
}
ColliderType3D ConvexCollider3D::GetType() const
{
return ColliderType3D::ConvexHull;
}
NewtonCollision* ConvexCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateConvexHull(world->GetHandle(), static_cast<int>(m_vertices.size()), reinterpret_cast<const float*>(m_vertices.data()), sizeof(Vector3f), m_tolerance, 0, m_matrix);
}
/******************************* CylinderCollider3D ********************************/
CylinderCollider3D::CylinderCollider3D(float length, float radius, const Matrix4f& transformMatrix) :
m_matrix(transformMatrix),
m_length(length),
m_radius(radius)
{
}
CylinderCollider3D::CylinderCollider3D(float length, float radius, const Vector3f& translation, const Quaternionf& rotation) :
CylinderCollider3D(length, radius, Matrix4f::Transform(translation, rotation))
{
}
float CylinderCollider3D::GetLength() const
{
return m_length;
}
float CylinderCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D CylinderCollider3D::GetType() const
{
return ColliderType3D::Cylinder;
}
NewtonCollision* CylinderCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateCylinder(world->GetHandle(), m_radius, m_radius, m_length, 0, m_matrix);
}
/********************************* NullCollider3D **********************************/
NullCollider3D::NullCollider3D()
{
}
ColliderType3D NullCollider3D::GetType() const
{
return ColliderType3D::Null;
}
void NullCollider3D::ComputeInertialMatrix(Vector3f* inertia, Vector3f* center) const
{
if (inertia)
inertia->MakeUnit();
if (center)
center->MakeZero();
}
NewtonCollision* NullCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateNull(world->GetHandle());
}
/******************************** SphereCollider3D *********************************/
SphereCollider3D::SphereCollider3D(float radius, const Matrix4f& transformMatrix) :
SphereCollider3D(radius, transformMatrix.GetTranslation())
{
}
SphereCollider3D::SphereCollider3D(float radius, const Vector3f& translation, const Quaternionf& rotation) :
m_position(translation),
m_radius(radius)
{
NazaraUnused(rotation);
}
Boxf SphereCollider3D::ComputeAABB(const Matrix4f& offsetMatrix, const Vector3f& scale) const
{
Vector3f size(m_radius * Sqrt5<float> * scale);
Vector3f position(offsetMatrix.GetTranslation());
return Boxf(position - size, position + size);
}
float SphereCollider3D::ComputeVolume() const
{
return Pi<float> * m_radius * m_radius * m_radius / 3.f;
}
float SphereCollider3D::GetRadius() const
{
return m_radius;
}
ColliderType3D SphereCollider3D::GetType() const
{
return ColliderType3D::Sphere;
}
NewtonCollision* SphereCollider3D::CreateHandle(PhysWorld3D* world) const
{
return NewtonCreateSphere(world->GetHandle(), m_radius, 0, Matrix4f::Translate(m_position));
}
}