NazaraEngine/include/Nazara/Math/Angle.inl

793 lines
18 KiB
C++

// Copyright (C) 2023 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
// This file is part of the "Nazara Engine - Math module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <NazaraUtils/Algorithm.hpp>
#include <algorithm>
#include <cstring>
#include <sstream>
#ifdef NAZARA_PLATFORM_POSIX
#include <math.h> //< sincos
#endif
#include <Nazara/Core/Debug.hpp>
namespace Nz
{
namespace Detail
{
template<AngleUnit From, AngleUnit To> struct AngleConversion;
template<AngleUnit Unit>
struct AngleConversion<Unit, Unit>
{
template<typename T>
static constexpr T Convert(T angle)
{
return angle;
}
};
template<>
struct AngleConversion<AngleUnit::Degree, AngleUnit::Radian>
{
template<typename T>
static constexpr T Convert(T angle)
{
return DegreeToRadian(angle);
}
};
template<>
struct AngleConversion<AngleUnit::Degree, AngleUnit::Turn>
{
template<typename T>
static constexpr T Convert(T angle)
{
return angle / T(360);
}
};
template<>
struct AngleConversion<AngleUnit::Radian, AngleUnit::Degree>
{
template<typename T>
static constexpr T Convert(T angle)
{
return RadianToDegree(angle);
}
};
template<>
struct AngleConversion<AngleUnit::Radian, AngleUnit::Turn>
{
template<typename T>
static constexpr T Convert(T angle)
{
return angle / (T(2) * Pi<T>);
}
};
template<>
struct AngleConversion<AngleUnit::Turn, AngleUnit::Degree>
{
template<typename T>
static constexpr T Convert(T angle)
{
return angle * T(360);
}
};
template<>
struct AngleConversion<AngleUnit::Turn, AngleUnit::Radian>
{
template<typename T>
static constexpr T Convert(T angle)
{
return angle * T(2) * Pi<T>;
}
};
template<AngleUnit Unit> struct AngleUtils;
template<>
struct AngleUtils<AngleUnit::Degree>
{
template<typename T>
static constexpr T GetEpsilon()
{
return T(1e-4);
}
template<typename T>
static constexpr T GetLimit()
{
return 360;
}
template<typename T> static std::ostream& ToString(std::ostream& out, T value)
{
return out << "Angle(" << value << "deg)";
}
};
template<>
struct AngleUtils<AngleUnit::Radian>
{
template<typename T>
static constexpr T GetEpsilon()
{
return T(1e-5);
}
template<typename T>
static constexpr T GetLimit()
{
return T(2) * Pi<T>;
}
template<typename T>
static std::ostream& ToString(std::ostream& out, T value)
{
return out << "Angle(" << value << "rad)";
}
};
template<>
struct AngleUtils<AngleUnit::Turn>
{
template<typename T>
static constexpr T GetEpsilon()
{
return T(1e-5);
}
template<typename T>
static constexpr T GetLimit()
{
return 1;
}
template<typename T>
static std::ostream& ToString(std::ostream& out, T value)
{
return out << "Angle(" << value << "turn)";
}
};
#ifdef NAZARA_PLATFORM_LINUX
template<typename T>
void SinCos(T x, T* sin, T* cos)
{
double s, c;
::sincos(x, &s, &c);
*sin = static_cast<T>(s);
*cos = static_cast<T>(c);
}
template<>
inline void SinCos(float x, float* s, float* c)
{
::sincosf(x, s, c);
}
template<>
inline void SinCos(long double x, long double* s, long double* c)
{
::sincosl(x, s, c);
}
#else
// Naive implementation, hopefully optimized by the compiler
template<typename T>
void SinCos(T x, T* sin, T* cos)
{
*sin = std::sin(x);
*cos = std::cos(x);
}
#endif
}
/*!
* \ingroup math
* \class Angle
* \brief Math class that represents an angle
*/
/*!
* \brief Constructs an Angle object with an angle value
*
* \param value value of the angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>::Angle(T angle) :
value(angle)
{
}
template<AngleUnit Unit, typename T>
template<typename U>
constexpr Angle<Unit, T>::Angle(const Angle<Unit, U>& angle) :
value(static_cast<T>(angle.value))
{
}
/*!
* \brief Constructs an Angle object from a angle in a specific unit, converting if required
*
* \param value Angle object to copy
*/
template<AngleUnit Unit, typename T>
template<AngleUnit FromUnit>
constexpr Angle<Unit, T>::Angle(const Angle<FromUnit, T>& angle) :
value(Detail::AngleConversion<FromUnit, Unit>::Convert(angle.value))
{
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::ApproxEqual(const Angle& angle) const
{
return ApproxEqual(angle, Detail::AngleUtils<Unit>::template GetEpsilon<T>());
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::ApproxEqual(const Angle& angle, T maxDifference) const
{
return NumberEquals(value, angle.value, maxDifference);
}
/*!
* \brief Computes the cosine of the angle
* \return Cosine of angle
*
* \see GetSinCos
*/
template<AngleUnit Unit, typename T>
T Angle<Unit, T>::GetCos() const
{
return std::cos(ToRadians());
}
/*!
* \brief Computes the sine of the angle
* \return Sine of angle
*
* \see GetSinCos
*/
template<AngleUnit Unit, typename T>
T Angle<Unit, T>::GetSin() const
{
return std::sin(ToRadians());
}
/*!
* \brief Computes both sines and cosines of the angle
* \return Sine and cosine of the angle
*
* \remark This is potentially faster than calling both GetSin and GetCos separately as it can computes both values at the same time.
*
* \see GetCos, GetSin
*/
template<AngleUnit Unit, typename T>
std::pair<T, T> Angle<Unit, T>::GetSinCos() const
{
T sin, cos;
Detail::SinCos<T>(ToRadians(), &sin, &cos);
return std::make_pair(sin, cos);
}
/*!
* \brief Computes the tangent of the angle
* \return Tangent value of the angle
*
* \see GetCos, GetSin
*/
template<AngleUnit Unit, typename T>
T Angle<Unit, T>::GetTan() const
{
return std::tan(ToRadians());
}
/*!
* \brief Normalizes the angle value
*
* If angle exceeds local limits positively or negatively, bring it back between them.
* For degree angles, local limits are [-180, 180]
* For radian angles, local limits are [-Pi, Pi]
* For turn angles, local limits are [-1, 1]
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>& Angle<Unit, T>::Normalize()
{
constexpr T limit = Detail::AngleUtils<Unit>::template GetLimit<T>();
constexpr T halfLimit = limit / T(2);
value = Nz::Mod(value + halfLimit, limit);
if (value < T(0))
value += limit;
value -= halfLimit;
return *this;
}
/*!
* \brief Returns the ToUnit angle that is equivalent to this one
* \return Equivalent ToUnit angle value
*/
template<AngleUnit Unit, typename T>
template<AngleUnit ToUnit>
T Angle<Unit, T>::To() const
{
return Detail::AngleConversion<Unit, ToUnit>::Convert(value);
}
/*!
* \brief Returns the ToUnit angle that is equivalent to this one
* \return Equivalent ToUnit angle
*/
template<AngleUnit Unit, typename T>
template<AngleUnit ToUnit>
Angle<ToUnit, T> Angle<Unit, T>::ToAngle() const
{
return Angle<ToUnit, T>(To<ToUnit>());
}
/*!
* \brief Returns the degree angle that is equivalent to this one
* \return Equivalent degree angle value
*/
template<AngleUnit Unit, typename T>
constexpr T Angle<Unit, T>::ToDegrees() const
{
return To<AngleUnit::Degree>();
}
/*!
* \brief Returns the degree angle that is equivalent to this one
* \return Equivalent degree angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<AngleUnit::Degree, T> Angle<Unit, T>::ToDegreeAngle() const
{
return ToAngle<AngleUnit::Degree>();
}
/*!
* \brief Converts the angle to an Euler Angles representation
* \return A 2D rotation expressed in Euler angles
*
* This will assume two-dimensional usage, and will set the angle value (as degrees) as the roll value of the Euler Angles, leaving pitch and yaw to zero
*/
template<AngleUnit Unit, typename T>
EulerAngles<T> Angle<Unit, T>::ToEulerAngles() const
{
return EulerAngles<T>(0, 0, ToDegrees());
}
/*!
* \brief Converts the angle to a Quaternion representation
* \return A 2D rotation expressed with Quaternion
*
* This will assume two-dimensional usage, as if the angle was first converted to Euler Angles and then to a Quaternion
*
* \see ToEulerAngles
*/
template<AngleUnit Unit, typename T>
Quaternion<T> Angle<Unit, T>::ToQuaternion() const
{
auto halfAngle = Angle(*this) / 2.f;
auto sincos = halfAngle.GetSinCos();
return Quaternion<T>(sincos.second, 0, 0, sincos.first);
}
/*!
* \brief Returns the radian angle that is equivalent to this angle
* \return Equivalent radian angle value
*/
template<AngleUnit Unit, typename T>
constexpr T Angle<Unit, T>::ToRadians() const
{
return To<AngleUnit::Radian>();
}
/*!
* \brief Returns the radian angle that is equivalent to this angle
* \return Equivalent radian angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<AngleUnit::Radian, T> Angle<Unit, T>::ToRadianAngle() const
{
return ToAngle<AngleUnit::Radian>();
}
/*!
* \brief Converts the angle to a string representation
* \return String representation of the angle
*/
template<AngleUnit Unit, typename T>
std::string Angle<Unit, T>::ToString() const
{
std::ostringstream oss;
Detail::AngleUtils<Unit>::ToString(oss, value);
return oss.str();
}
/*!
* \brief Returns the turn angle that is equivalent to this angle
* \return Equivalent turn angle value
*/
template<AngleUnit Unit, typename T>
constexpr T Angle<Unit, T>::ToTurns() const
{
return To<AngleUnit::Turn>(value);
}
/*!
* \brief Returns the turn angle that is equivalent to this angle
* \return Equivalent turn angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<AngleUnit::Turn, T> Angle<Unit, T>::ToTurnAngle() const
{
return ToAngle<AngleUnit::Turn>();
}
/*!
* \brief Returns the degree angle that is equivalent to this one
* \return Equivalent degree angle
*/
/*template<AngleUnit Unit, typename T>
template<AngleUnit U, typename>
Angle<Unit, T>::operator Angle<AngleUnit::Degree, T>() const
{
return ToDegreeAngle();
}*/
/*!
* \brief Converts the angle to a string representation
* \return String representation of the angle
*/
/*template<AngleUnit Unit, typename T>
template<AngleUnit U, typename>
Angle<Unit, T>::operator Angle<AngleUnit::Radian, T>() const
{
return ToRadianAngle();
}*/
/*!
* \brief Helps to represent the sign of the angle
* \return A constant reference to this angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator+() const
{
return *this;
}
/*!
* \brief Negates the angle
* \return An angle with a negated value
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator-() const
{
return Angle(-value);
}
/*!
* \brief Addition operator
* \return Adds two angles together
*
* \param other Angle to add
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator+(Angle other) const
{
return Angle(value + other.value);
}
/*!
* \brief Subtraction operator
* \return Subtracts two angles together
*
* \param other Angle to subtract
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator-(Angle other) const
{
return Angle(value - other.value);
}
/*!
* \brief Multiplication operator
* \return A copy of the angle, scaled by the multiplier
*
* \param scalar Multiplier
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator*(T scalar) const
{
return Angle(value * scalar);
}
/*!
* \brief Divides the angle by a scalar
* \return A copy of the angle, divided by the divider
*
* \param divider Divider
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::operator/(T divider) const
{
return Angle(value / divider);
}
/*!
* \brief Adds an angle by another
* \return A reference to the angle
*
* \param other Angle to add
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>& Angle<Unit, T>::operator+=(Angle other)
{
value += other.value;
return *this;
}
/*!
* \brief Subtract an angle by another
* \return A reference to the angle
*
* \param other Angle to subtract
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>& Angle<Unit, T>::operator-=(Angle other)
{
value -= other.value;
return *this;
}
/*!
* \brief Scales the angle by a scalar
* \return A reference to the angle
*
* \param scalar Multiplier
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>& Angle<Unit, T>::operator*=(T scalar)
{
value *= scalar;
return *this;
}
/*!
* \brief Divides the angle by a scalar
* \return A reference to the angle
*
* \param divider Divider
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T>& Angle<Unit, T>::operator/=(T divider)
{
value /= divider;
return *this;
}
/*!
* \brief Compares the angle to another for equality
* \return True if both angles are equal
*
* \param other The other angle to compare to
*/
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator==(Angle other) const
{
return value == other.value;
}
/*!
* \brief Compares the angle to another for inequality
* \return True if both angles are equal
*
* \param other The other angle to compare to
*/
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator!=(Angle other) const
{
return value != other.value;
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator<(Angle other) const
{
return value < other.value;
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator<=(Angle other) const
{
return value <= other.value;
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator>(Angle other) const
{
return value > other.value;
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::operator>=(Angle other) const
{
return value >= other.value;
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::ApproxEqual(const Angle& lhs, const Angle& rhs)
{
return lhs.ApproxEqual(rhs);
}
template<AngleUnit Unit, typename T>
constexpr bool Angle<Unit, T>::ApproxEqual(const Angle& lhs, const Angle& rhs, T maxDifference)
{
return lhs.ApproxEqual(rhs, maxDifference);
}
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::Clamp(Angle angle, Angle min, Angle max)
{
return Angle(std::clamp(angle.value, min.value, max.value));
}
/*!
* \brief Builds an Angle instance using a FromUnit angle, converting if needed
* \return An angle describing the FromUnit angle as Unit
*
* \param ang Degree angle
*/
template<AngleUnit Unit, typename T>
template<AngleUnit FromUnit>
constexpr Angle<Unit, T> Angle<Unit, T>::From(T value)
{
return Angle(Detail::AngleConversion<FromUnit, Unit>::Convert(value));
}
/*!
* \brief Builds an Angle instance using a degree angle, converting if needed
* \return An angle describing the degree angle as Unit
*
* \param ang Degree angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::FromDegrees(T degrees)
{
return From<AngleUnit::Degree>(degrees);
}
/*!
* \brief Builds an Angle instance using a radian angle, converting if needed
* \return An angle describing the radian angle as Unit
*
* \param ang Radian angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::FromRadians(T radians)
{
return From<AngleUnit::Radian>(radians);
}
/*!
* \brief Builds an Angle instance using a radian angle, converting if needed
* \return An angle describing the radian angle as Unit
*
* \param ang Radian angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::FromTurns(T turns)
{
return From<AngleUnit::Turn>(turns);
}
/*!
* \brief Returns an angle with an angle of zero
* \return Zero angle
*/
template<AngleUnit Unit, typename T>
constexpr Angle<Unit, T> Angle<Unit, T>::Zero()
{
return Angle(0);
}
/*!
* \brief Multiplication operator
* \return An angle corresponding to scale * angle
*
* \param scale Multiplier
* \param angle Angle
*/
template<AngleUnit Unit, typename T>
Angle<Unit, T> operator*(T scale, Angle<Unit, T> angle)
{
return Angle<Unit, T>(scale * angle.value);
}
/*!
* \brief Division operator
* \return An angle corresponding to scale / angle
*
* \param scale Divisor
* \param angle Angle
*/
template<AngleUnit Unit, typename T>
Angle<Unit, T> operator/(T scale, Angle<Unit, T> angle)
{
return Angle<Unit, T>(scale / angle.value);
}
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param box The box to output
*/
template<AngleUnit Unit, typename T>
std::ostream& operator<<(std::ostream& out, Angle<Unit, T> angle)
{
return Detail::AngleUtils<Unit>::ToString(out, angle.value);
}
/*!
* \ingroup math
* \brief Clamps an angle value between min and max and returns the expected value
* \return If value is not in the interval of min..max, value obtained is the nearest limit of this interval
*
* \param value Value to clamp
* \param min Minimum of the interval
* \param max Maximum of the interval
*/
template<typename T, AngleUnit Unit>
constexpr Angle<Unit, T> Clamp(Angle<Unit, T> value, T min, T max)
{
return std::max(std::min(value.value, max), min);
}
/*!
* \brief Serializes an Angle
* \return true if successfully serialized
*
* \param context Serialization context
* \param angle Input Angle
*/
template<AngleUnit Unit, typename T>
bool Serialize(SerializationContext& context, Angle<Unit, T> angle, TypeTag<Angle<Unit, T>>)
{
if (!Serialize(context, angle.value))
return false;
return true;
}
/*!
* \brief Unserializes an Angle
* \return true if successfully unserialized
*
* \param context Serialization context
* \param angle Output Angle
*/
template<AngleUnit Unit, typename T>
bool Unserialize(SerializationContext& context, Angle<Unit, T>* angle, TypeTag<Angle<Unit, T>>)
{
if (!Unserialize(context, &angle->value))
return false;
return true;
}
}
#include <Nazara/Core/DebugOff.hpp>