806 lines
21 KiB
C++
806 lines
21 KiB
C++
// Copyright (C) 2022 Gawaboumga (https://github.com/Gawaboumga) - Jérôme "Lynix" Leclercq (lynix680@gmail.com)
|
|
// This file is part of the "Nazara Engine - Math module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Math/Ray.hpp>
|
|
#include <Nazara/Core/Algorithm.hpp>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
namespace Nz
|
|
{
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Ray
|
|
* \brief Math class that represents a ray or a straight line in 3D space
|
|
*
|
|
* This ray is meant to be understood like origin + lambda * direction, where lambda is a real positive parameter
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from its position and direction
|
|
*
|
|
* \param X X position
|
|
* \param Y Y position
|
|
* \param Z Z position
|
|
* \param DirectionX X component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
|
|
{
|
|
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two Vector3
|
|
*
|
|
* \param Origin Vector which represents the origin of the ray
|
|
* \param Direction Vector which represents the direction of the ray
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two arrays of three elements
|
|
*
|
|
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
|
|
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>::Ray(const T Origin[3], const T Direction[3])
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from the intersection of two planes
|
|
*
|
|
* \param planeOne First plane
|
|
* \param planeTwo Second secant plane
|
|
*
|
|
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
|
|
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo)
|
|
{
|
|
Set(planeOne, planeTwo);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from another type of Ray
|
|
*
|
|
* \param ray Ray of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Ray<T>::Ray(const Ray<U>& ray)
|
|
{
|
|
Set(ray);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two Vector3 from another type of Ray
|
|
*
|
|
* \param Origin Origin of type U to convert to type T
|
|
* \param Direction Direction of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
/*!
|
|
* \brief Finds the closest point of the ray from point
|
|
* \return The parameter where the point along this ray that is closest to the point provided
|
|
*
|
|
* \param point The point to get the closest approach to
|
|
*/
|
|
|
|
template<typename T>
|
|
T Ray<T>::ClosestPoint(const Vector3<T>& point) const
|
|
{
|
|
Vector3<T> delta = point - origin;
|
|
T vsq = direction.GetSquaredLength();
|
|
T proj = delta.DotProduct(direction);
|
|
|
|
return proj / vsq;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the point along the ray for this parameter
|
|
* \return The point on the ray
|
|
*
|
|
* \param lambda Parameter to obtain a particular point on the ray
|
|
*/
|
|
|
|
template<typename T>
|
|
Vector3<T> Ray<T>::GetPoint(T lambda) const
|
|
{
|
|
return origin + lambda * direction;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the BoundingVolume
|
|
* \return true if it intersects
|
|
*
|
|
* \param volume BoundingVolume to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \remark If BoundingVolume is Extend::Infinite, then closestHit and furthestHit are equal to 0 et infinity
|
|
* \remark If BoundingVolume is Extend::Null, then closestHit and furthestHit are unchanged
|
|
* \remark If enumeration of BoundingVolume is not defined in Extend, a NazaraError is thrown and closestHit and furthestHit are unchanged
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
|
|
{
|
|
switch (volume.extend)
|
|
{
|
|
case Extend::Finite:
|
|
{
|
|
if (Intersect(volume.aabb))
|
|
return Intersect(volume.obb, closestHit, furthestHit);
|
|
|
|
return false;
|
|
}
|
|
|
|
case Extend::Infinite:
|
|
{
|
|
if (closestHit)
|
|
*closestHit = T(0.0);
|
|
|
|
if (furthestHit)
|
|
*furthestHit = std::numeric_limits<T>::infinity();
|
|
|
|
return true;
|
|
}
|
|
|
|
case Extend::Null:
|
|
return false;
|
|
}
|
|
|
|
NazaraError("Invalid extend type (0x" + NumberToString(UnderlyingCast(volume.extend), 16) + ')');
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the Box
|
|
* \return true if it intersects
|
|
*
|
|
* \param box Box to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const
|
|
{
|
|
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
|
|
T tfirst = T(0.0);
|
|
T tlast = std::numeric_limits<T>::infinity();
|
|
|
|
Vector3<T> boxMin = box.GetMinimum();
|
|
Vector3<T> boxMax = box.GetMaximum();
|
|
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
T dir = direction[i];
|
|
T ori = origin[i];
|
|
T max = boxMax[i];
|
|
T min = boxMin[i];
|
|
|
|
if (NumberEquals(dir, T(0.0)))
|
|
{
|
|
if (ori < max && ori > min)
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
T tmin = (min - ori) / dir;
|
|
T tmax = (max - ori) / dir;
|
|
if (tmin > tmax)
|
|
std::swap(tmin, tmax);
|
|
|
|
if (tmax < tfirst || tmin > tlast)
|
|
return false;
|
|
|
|
tfirst = std::max(tfirst, tmin);
|
|
tlast = std::min(tlast, tmax);
|
|
}
|
|
|
|
if (closestHit)
|
|
*closestHit = tfirst;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tlast;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the transform Matrix4 applied to the Box
|
|
* \return true if it intersects
|
|
*
|
|
* \param box Box to check
|
|
* \param transform Matrix4 which represents the transformation of the box
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const
|
|
{
|
|
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
|
|
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
|
|
T tMin = T(0.0);
|
|
T tMax = std::numeric_limits<T>::infinity();
|
|
|
|
Vector3<T> boxMin = box.GetMinimum();
|
|
Vector3<T> boxMax = box.GetMaximum();
|
|
Vector3<T> delta = transform.GetTranslation() - origin;
|
|
|
|
// Test intersection with the 2 planes perpendicular to the OBB's X axis
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
Vector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
|
|
T e = axis.DotProduct(delta);
|
|
T f = direction.DotProduct(axis);
|
|
|
|
if (!NumberEquals(f, T(0.0)))
|
|
{
|
|
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
|
|
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
|
|
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
|
|
|
|
// We want t1 to represent the nearest intersection,
|
|
// so if it's not the case, invert t1 and t2
|
|
if (t1 > t2)
|
|
std::swap(t1, t2);
|
|
|
|
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t2 < tMax)
|
|
tMax = t2;
|
|
|
|
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t1 > tMin)
|
|
tMin = t1;
|
|
|
|
// And here's the trick :
|
|
// If "far" is closer than "near", then there is NO intersection.
|
|
if (tMax < tMin)
|
|
return false;
|
|
}
|
|
else
|
|
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
|
|
if (-e + boxMin[i] > T(0.0) || -e + boxMax[i] < T(0.0))
|
|
return false;
|
|
}
|
|
|
|
if (closestHit)
|
|
*closestHit = tMin;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tMax;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the OrientedBox
|
|
* \return true if it intersects
|
|
*
|
|
* \param orientedBox OrientedBox to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const OrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
|
|
{
|
|
Vector3<T> corner = orientedBox.GetCorner(BoxCorner::FarLeftBottom);
|
|
Vector3<T> oppositeCorner = orientedBox.GetCorner(BoxCorner::NearRightTop);
|
|
|
|
Vector3<T> width = (orientedBox.GetCorner(BoxCorner::NearLeftBottom) - corner);
|
|
Vector3<T> height = (orientedBox.GetCorner(BoxCorner::FarLeftTop) - corner);
|
|
Vector3<T> depth = (orientedBox.GetCorner(BoxCorner::FarRightBottom) - corner);
|
|
|
|
// Construction de la matrice de transformation de l'OBB
|
|
Matrix4<T> matrix(width.x, height.x, depth.x, corner.x,
|
|
width.y, height.y, depth.y, corner.y,
|
|
width.z, height.z, depth.z, corner.z,
|
|
T(0.0), T(0.0), T(0.0), T(1.0));
|
|
|
|
matrix.InverseAffine();
|
|
|
|
corner = matrix.Transform(corner);
|
|
oppositeCorner = matrix.Transform(oppositeCorner);
|
|
|
|
Box<T> tmpBox(corner, oppositeCorner);
|
|
Ray<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
|
|
|
|
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the plane
|
|
* \return true if it intersects
|
|
*
|
|
* \param plane Plane to check
|
|
* \param hit Optional argument to get the parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const
|
|
{
|
|
T divisor = plane.normal.DotProduct(direction);
|
|
if (NumberEquals(divisor, T(0.0)))
|
|
return false; // Perpendicular
|
|
|
|
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
|
|
if (lambda < T(0.0))
|
|
return false; // The plane is 'behind' the ray.
|
|
|
|
if (hit)
|
|
*hit = lambda;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the sphere
|
|
* \return true if it intersects
|
|
*
|
|
* \param sphere Sphere to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const
|
|
{
|
|
Vector3<T> sphereRay = sphere.GetPosition() - origin;
|
|
T length = sphereRay.DotProduct(direction);
|
|
|
|
if (length < T(0.0))
|
|
return false; // ray is perpendicular to the vector origin - center
|
|
|
|
T squaredDistance = sphereRay.GetSquaredLength() - length * length;
|
|
T squaredRadius = sphere.radius * sphere.radius;
|
|
|
|
if (squaredDistance > squaredRadius)
|
|
return false; // if the ray is further than the radius
|
|
|
|
// Compute intersections points if required
|
|
if (closestHit || furthestHit)
|
|
{
|
|
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
|
|
|
|
if (closestHit)
|
|
*closestHit = length - deltaLambda;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = length + deltaLambda;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the triangle
|
|
* \return true if it intersects
|
|
*
|
|
* \param firstPoint First vertex of the triangle
|
|
* \param secondPoint Second vertex of the triangle
|
|
* \param thirdPoint Third vertex of the triangle
|
|
* \param hit Optional argument to get the parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::Intersect(const Vector3<T>& firstPoint, const Vector3<T>& secondPoint, const Vector3<T>& thirdPoint, T* hit) const
|
|
{
|
|
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
|
|
Vector3<T> firstEdge = secondPoint - firstPoint;
|
|
Vector3<T> secondEdge = thirdPoint - firstPoint;
|
|
|
|
Vector3<T> P = Vector3<T>::CrossProduct(direction, secondEdge);
|
|
const T divisor = firstEdge.DotProduct(P);
|
|
if (NumberEquals(divisor, T(0.0)))
|
|
return false; // Ray lies in plane of triangle
|
|
|
|
Vector3<T> directionToPoint = origin - firstPoint;
|
|
T u = directionToPoint.DotProduct(P) / divisor;
|
|
if (u < T(0.0) || u > T(1.0))
|
|
return 0; // The intersection lies outside of the triangle
|
|
|
|
Vector3<T> Q = Vector3<T>::CrossProduct(directionToPoint, firstEdge);
|
|
T v = directionToPoint.DotProduct(Q) / divisor;
|
|
if (v < T(0.0) || u + v > T(1.0))
|
|
return 0; // The intersection lies outside of the triangle
|
|
|
|
T t = secondEdge.DotProduct(Q) / divisor;
|
|
if (t > T(0.0))
|
|
{
|
|
if (hit)
|
|
*hit = t;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the ray with position (0, 0, 0) and direction (1, 0, 0)
|
|
* \return A reference to this ray with position (0, 0, 0) and direction (1, 0, 0)
|
|
*
|
|
* \see AxisX
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::MakeAxisX()
|
|
{
|
|
return Set(Vector3<T>::Zero(), Vector3<T>::UnitX());
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the ray with position (0, 0, 0) and direction (0, 1, 0)
|
|
* \return A reference to this ray with position (0, 0, 0) and direction (0, 1, 0)
|
|
*
|
|
* \see AxisY
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::MakeAxisY()
|
|
{
|
|
return Set(Vector3<T>::Zero(), Vector3<T>::UnitY());
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the ray with position (0, 0, 0) and direction (0, 0, 1)
|
|
* \return A reference to this ray with position (0, 0, 0) and direction (0, 0, 1)
|
|
*
|
|
* \see AxisZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::MakeAxisZ()
|
|
{
|
|
return Set(Vector3<T>::Zero(), Vector3<T>::UnitZ());
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the ray with position and direction
|
|
* \return A reference to this ray
|
|
*
|
|
* \param X X position
|
|
* \param Y Y position
|
|
* \param Z Z position
|
|
* \param DirectionX X component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
|
|
{
|
|
direction.Set(directionX, directionY, directionZ);
|
|
origin.Set(X, Y, Z);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the ray with position and direction
|
|
* \return A reference to this ray
|
|
*
|
|
* \param Origin Vector which represents the origin of the ray
|
|
* \param Direction Vector which represents the direction of the ray
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::Set(const Vector3<T>& Origin, const Vector3<T>& Direction)
|
|
{
|
|
direction = Direction;
|
|
origin = Origin;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of this ray from two arrays of three elements
|
|
* \return A reference to this ray
|
|
*
|
|
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
|
|
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::Set(const T Origin[3], const T Direction[3])
|
|
{
|
|
direction.Set(Direction);
|
|
origin.Set(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of this ray from the intersection of two planes
|
|
* \return A reference to this ray
|
|
*
|
|
* \param planeOne First plane
|
|
* \param planeTwo Second secant plane
|
|
*
|
|
* \remark Produce a NazaraError if planes are parallel with NAZARA_MATH_SAFE defined
|
|
* \throw std::domain_error if NAZARA_MATH_SAFE is defined and planes are parallel
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T>& Ray<T>::Set(const Plane<T>& planeOne, const Plane<T>& planeTwo)
|
|
{
|
|
T termOne = planeOne.normal.GetLength();
|
|
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
|
|
T termFour = planeTwo.normal.GetLength();
|
|
T det = termOne * termFour - termTwo * termTwo;
|
|
|
|
#if NAZARA_MATH_SAFE
|
|
if (NumberEquals(det, T(0.0)))
|
|
{
|
|
std::string error("Planes are parallel");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
T invdet = T(1.0) / det;
|
|
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
|
|
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
|
|
|
|
direction = planeOne.normal.CrossProduct(planeTwo.normal);
|
|
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the ray from another type of Ray
|
|
* \return A reference to this ray
|
|
*
|
|
* \param ray Ray of type U to convert its components
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Ray<T>& Ray<T>::Set(const Ray<U>& ray)
|
|
{
|
|
direction.Set(ray.direction);
|
|
origin.Set(ray.origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the ray from another type of Ray
|
|
* \return A reference to this ray
|
|
*
|
|
* \param Origin Origin of type U to convert to type T
|
|
* \param Direction Direction of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Ray<T>& Ray<T>::Set(const Vector3<U>& Origin, const Vector3<U>& Direction)
|
|
{
|
|
direction.Set(Direction);
|
|
origin.Set(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives a string representation
|
|
* \return A string representation of the object: "Ray(origin: Vector3(origin.x, origin.y, origin.z), direction: Vector3(direction.x, direction.y, direction.z))"
|
|
*/
|
|
|
|
template<typename T>
|
|
std::string Ray<T>::ToString() const
|
|
{
|
|
std::ostringstream ss;
|
|
ss << *this;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the direction ray with the lambda to get the point along the ray for this parameter
|
|
* \return The point on the ray
|
|
*
|
|
* \param lambda Parameter to obtain a particular point on the ray
|
|
*
|
|
* \see GetPoint
|
|
*/
|
|
|
|
template<typename T>
|
|
Vector3<T> Ray<T>::operator*(T lambda) const
|
|
{
|
|
return GetPoint(lambda);
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the ray to other one
|
|
* \return true if the ray are the same
|
|
*
|
|
* \param rec Other ray to compare with
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::operator==(const Ray& ray) const
|
|
{
|
|
return direction == ray.direction && origin == ray.origin;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the ray to other one
|
|
* \return false if the ray are the same
|
|
*
|
|
* \param rec Other ray to compare with
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Ray<T>::operator!=(const Ray& ray) const
|
|
{
|
|
return !operator==(ray);
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (1, 0, 0)
|
|
* \return A ray with position (0, 0, 0) and direction (1, 0, 0)
|
|
*
|
|
* \see MakeAxisX
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T> Ray<T>::AxisX()
|
|
{
|
|
Ray axis;
|
|
axis.MakeAxisX();
|
|
|
|
return axis;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (0, 1, 0)
|
|
* \return A ray with position (0, 0, 0) and direction (0, 1, 0)
|
|
*
|
|
* \see MakeAxisY
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T> Ray<T>::AxisY()
|
|
{
|
|
Ray axis;
|
|
axis.MakeAxisY();
|
|
|
|
return axis;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (0, 0, 1)
|
|
* \return A ray with position (0, 0, 0) and direction (0, 0, 1)
|
|
*
|
|
* \see MakeAxisZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T> Ray<T>::AxisZ()
|
|
{
|
|
Ray axis;
|
|
axis.MakeAxisZ();
|
|
|
|
return axis;
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates the ray to other one with a factor of interpolation
|
|
* \return A new ray which is the interpolation of two rectangles
|
|
*
|
|
* \param from Initial ray
|
|
* \param to Target ray
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
|
|
*
|
|
* \see Lerp
|
|
*/
|
|
|
|
template<typename T>
|
|
Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation)
|
|
{
|
|
return Ray<T>(Nz::Vector3<T>::Lerp(from.origin, to.origin, interpolation), Nz::Vector3<T>::Lerp(from.direction, to.direction, interpolation));
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes a Ray
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param ray Input Ray
|
|
*/
|
|
template<typename T>
|
|
bool Serialize(SerializationContext& context, const Ray<T>& ray, TypeTag<Ray<T>>)
|
|
{
|
|
if (!Serialize(context, ray.origin))
|
|
return false;
|
|
|
|
if (!Serialize(context, ray.direction))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes a Ray
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param ray Output Ray
|
|
*/
|
|
template<typename T>
|
|
bool Unserialize(SerializationContext& context, Ray<T>* ray, TypeTag<Ray<T>>)
|
|
{
|
|
if (!Unserialize(context, &ray->origin))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &ray->direction))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param ray The ray to output
|
|
*/
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray)
|
|
{
|
|
return out << "Ray(origin: " << ray.origin << ", direction: " << ray.direction << ")";
|
|
}
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|