621 lines
17 KiB
C++
621 lines
17 KiB
C++
// Copyright (C) 2024 Gawaboumga (https://github.com/Gawaboumga) - Jérôme "SirLynix" Leclercq (lynix680@gmail.com)
|
|
// This file is part of the "Nazara Engine - Math module"
|
|
// For conditions of distribution and use, see copyright notice in Export.hpp
|
|
|
|
#include <NazaraUtils/MathUtils.hpp>
|
|
#include <limits>
|
|
#include <sstream>
|
|
|
|
namespace Nz
|
|
{
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Ray
|
|
* \brief Math class that represents a ray or a straight line in 3D space
|
|
*
|
|
* This ray is meant to be understood like origin + lambda * direction, where lambda is a real positive parameter
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from its position and direction
|
|
*
|
|
* \param X X position
|
|
* \param Y Y position
|
|
* \param Z Z position
|
|
* \param DirectionX X component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
* \param DirectionY Y component of the vector direction
|
|
*/
|
|
template<typename T>
|
|
constexpr Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ) :
|
|
direction(DirectionX, DirectionY, DirectionZ),
|
|
origin(X, Y, Z)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two Vector3
|
|
*
|
|
* \param Origin Vector which represents the origin of the ray
|
|
* \param Direction Vector which represents the direction of the ray
|
|
*/
|
|
template<typename T>
|
|
constexpr Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction) :
|
|
direction(Direction),
|
|
origin(Origin)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two arrays of three elements
|
|
*
|
|
* \param Origin[3] Origin[0] is X position, Origin[1] is Y position and Origin[2] is Z position
|
|
* \param Direction[3] Direction[0] is X direction, Direction[1] is Y direction and Direction[2] is Z direction
|
|
*/
|
|
template<typename T>
|
|
constexpr Ray<T>::Ray(const T Origin[3], const T Direction[3]) :
|
|
direction(Direction),
|
|
origin(Origin)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from the intersection of two planes
|
|
*
|
|
* \param planeOne First plane
|
|
* \param planeTwo Second secant plane
|
|
*/
|
|
template<typename T>
|
|
Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo)
|
|
{
|
|
T termOne = planeOne.normal.GetLength();
|
|
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
|
|
T termFour = planeTwo.normal.GetLength();
|
|
T det = termOne * termFour - termTwo * termTwo;
|
|
|
|
#ifdef NAZARA_DEBUG
|
|
if (NumberEquals(det, T(0.0)))
|
|
{
|
|
std::string error("Planes are parallel");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
T invdet = T(1.0) / det;
|
|
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
|
|
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
|
|
|
|
direction = planeOne.normal.CrossProduct(planeTwo.normal);
|
|
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from another type of Ray
|
|
*
|
|
* \param ray Ray of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
constexpr Ray<T>::Ray(const Ray<U>& ray) :
|
|
direction(ray.direction),
|
|
origin(ray.origin)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Ray object from two Vector3 from another type of Ray
|
|
*
|
|
* \param Origin Origin of type U to convert to type T
|
|
* \param Direction Direction of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
constexpr Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction) :
|
|
direction(Direction),
|
|
origin(Origin)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::ApproxEqual(const Ray& ray, T maxDifference) const
|
|
{
|
|
return direction.ApproxEqual(ray.direction, maxDifference) && origin.ApproxEqual(ray.origin, maxDifference);
|
|
}
|
|
|
|
/*!
|
|
* \brief Finds the closest point of the ray from point
|
|
* \return The parameter where the point along this ray that is closest to the point provided
|
|
*
|
|
* \param point The point to get the closest approach to
|
|
*/
|
|
template<typename T>
|
|
constexpr T Ray<T>::ClosestPoint(const Vector3<T>& point) const
|
|
{
|
|
Vector3<T> delta = point - origin;
|
|
T vsq = direction.GetSquaredLength();
|
|
T proj = delta.DotProduct(direction);
|
|
|
|
return proj / vsq;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gets the point along the ray for this parameter
|
|
* \return The point on the ray
|
|
*
|
|
* \param lambda Parameter to obtain a particular point on the ray
|
|
*/
|
|
template<typename T>
|
|
constexpr Vector3<T> Ray<T>::GetPoint(T lambda) const
|
|
{
|
|
return origin + lambda * direction;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the BoundingVolume
|
|
* \return true if it intersects
|
|
*
|
|
* \param volume BoundingVolume to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \remark If BoundingVolume is Extent::Infinite, then closestHit and furthestHit are equal to 0 et infinity
|
|
* \remark If BoundingVolume is Extent::Null, then closestHit and furthestHit are unchanged
|
|
* \remark If enumeration of BoundingVolume is not defined in Extent, a NazaraError is thrown and closestHit and furthestHit are unchanged
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
|
|
{
|
|
switch (volume.extent)
|
|
{
|
|
case Extent::Finite:
|
|
{
|
|
if (Intersect(volume.aabb))
|
|
return true; // TODO: Should test OBB but there's currently no way of doing so (OrientedBox don't store enough info?)
|
|
|
|
return false;
|
|
}
|
|
|
|
case Extent::Infinite:
|
|
{
|
|
if (closestHit)
|
|
*closestHit = T(0.0);
|
|
|
|
if (furthestHit)
|
|
*furthestHit = std::numeric_limits<T>::infinity();
|
|
|
|
return true;
|
|
}
|
|
|
|
case Extent::Null:
|
|
return false;
|
|
}
|
|
|
|
NazaraErrorFmt("invalid extent type ({0:#x})", UnderlyingCast(volume.extent));
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the Box
|
|
* \return true if it intersects
|
|
*
|
|
* \param box Box to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const
|
|
{
|
|
// https://tavianator.com/2015/ray_box_nan.html
|
|
Vector3<T> boxMin = box.GetMinimum();
|
|
Vector3<T> boxMax = box.GetMaximum();
|
|
|
|
T t1 = (boxMin[0] - origin[0]) / direction[0];
|
|
T t2 = (boxMax[0] - origin[0]) / direction[0];
|
|
|
|
T tmin = std::min(t1, t2);
|
|
T tmax = std::max(t1, t2);
|
|
|
|
for (unsigned int i = 1; i < 3; ++i)
|
|
{
|
|
t1 = (boxMin[i] - origin[i]) / direction[i];
|
|
t2 = (boxMax[i] - origin[i]) / direction[i];
|
|
|
|
tmin = std::max(tmin, std::min(t1, t2));
|
|
tmax = std::min(tmax, std::max(t1, t2));
|
|
}
|
|
|
|
tmin = std::max(tmin, T(0.0));
|
|
|
|
if (closestHit)
|
|
*closestHit = tmin;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tmax;
|
|
|
|
return tmax > tmin;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the transform Matrix4 applied to the Box
|
|
* \return true if it intersects
|
|
*
|
|
* \param box Box to check
|
|
* \param transform Matrix4 which represents the transformation of the box
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const
|
|
{
|
|
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
|
|
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
|
|
T tMin = T(0.0);
|
|
T tMax = std::numeric_limits<T>::infinity();
|
|
|
|
Vector3<T> boxMin = box.GetMinimum();
|
|
Vector3<T> boxMax = box.GetMaximum();
|
|
Vector3<T> delta = transform.GetTranslation() - origin;
|
|
|
|
// Test intersection with the 2 planes perpendicular to the OBB's X axis
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
{
|
|
Vector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
|
|
T e = axis.DotProduct(delta);
|
|
T f = direction.DotProduct(axis);
|
|
|
|
if (!NumberEquals(f, T(0.0)))
|
|
{
|
|
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
|
|
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
|
|
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
|
|
|
|
// We want t1 to represent the nearest intersection,
|
|
// so if it's not the case, invert t1 and t2
|
|
if (t1 > t2)
|
|
std::swap(t1, t2);
|
|
|
|
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t2 < tMax)
|
|
tMax = t2;
|
|
|
|
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
|
|
if (t1 > tMin)
|
|
tMin = t1;
|
|
|
|
// And here's the trick :
|
|
// If "far" is closer than "near", then there is NO intersection.
|
|
if (tMax < tMin)
|
|
return false;
|
|
}
|
|
else
|
|
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
|
|
if (-e + boxMin[i] > T(0.0) || -e + boxMax[i] < T(0.0))
|
|
return false;
|
|
}
|
|
|
|
if (closestHit)
|
|
*closestHit = tMin;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = tMax;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the plane
|
|
* \return true if it intersects
|
|
*
|
|
* \param plane Plane to check
|
|
* \param hit Optional argument to get the parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const
|
|
{
|
|
T divisor = plane.normal.DotProduct(direction);
|
|
if (NumberEquals(divisor, T(0.0)))
|
|
return false; // Perpendicular
|
|
|
|
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
|
|
if (lambda < T(0.0))
|
|
return false; // The plane is 'behind' the ray.
|
|
|
|
if (hit)
|
|
*hit = lambda;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the sphere
|
|
* \return true if it intersects
|
|
*
|
|
* \param sphere Sphere to check
|
|
* \param closestHit Optional argument to get the closest parameter where the intersection is only if it happened
|
|
* \param furthestHit Optional argument to get the furthest parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const
|
|
{
|
|
Vector3<T> sphereRay = sphere.GetPosition() - origin;
|
|
T length = sphereRay.DotProduct(direction);
|
|
|
|
if (length < T(0.0))
|
|
return false; // ray is perpendicular to the vector origin - center
|
|
|
|
T squaredDistance = sphereRay.GetSquaredLength() - length * length;
|
|
T squaredRadius = sphere.radius * sphere.radius;
|
|
|
|
if (squaredDistance > squaredRadius)
|
|
return false; // if the ray is further than the radius
|
|
|
|
// Compute intersections points if required
|
|
if (closestHit || furthestHit)
|
|
{
|
|
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
|
|
|
|
if (closestHit)
|
|
*closestHit = length - deltaLambda;
|
|
|
|
if (furthestHit)
|
|
*furthestHit = length + deltaLambda;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Checks whether or not this ray intersects with the triangle
|
|
* \return true if it intersects
|
|
*
|
|
* \param firstPoint First vertex of the triangle
|
|
* \param secondPoint Second vertex of the triangle
|
|
* \param thirdPoint Third vertex of the triangle
|
|
* \param hit Optional argument to get the parameter where the intersection is only if it happened
|
|
*
|
|
* \see Intersect
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::Intersect(const Vector3<T>& firstPoint, const Vector3<T>& secondPoint, const Vector3<T>& thirdPoint, T* hit) const
|
|
{
|
|
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
|
|
Vector3<T> firstEdge = secondPoint - firstPoint;
|
|
Vector3<T> secondEdge = thirdPoint - firstPoint;
|
|
|
|
Vector3<T> P = Vector3<T>::CrossProduct(direction, secondEdge);
|
|
const T divisor = firstEdge.DotProduct(P);
|
|
if (NumberEquals(divisor, T(0.0)))
|
|
return false; // Ray lies in plane of triangle
|
|
|
|
Vector3<T> directionToPoint = origin - firstPoint;
|
|
T u = directionToPoint.DotProduct(P) / divisor;
|
|
if (u < T(0.0) || u > T(1.0))
|
|
return false; // The intersection lies outside of the triangle
|
|
|
|
Vector3<T> Q = Vector3<T>::CrossProduct(directionToPoint, firstEdge);
|
|
T v = directionToPoint.DotProduct(Q) / divisor;
|
|
if (v < T(0.0) || u + v > T(1.0))
|
|
return false; // The intersection lies outside of the triangle
|
|
|
|
T t = secondEdge.DotProduct(Q) / divisor;
|
|
if (t > T(0.0))
|
|
{
|
|
if (hit)
|
|
*hit = t;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives a string representation
|
|
* \return A string representation of the object: "Ray(origin: Vector3(origin.x, origin.y, origin.z), direction: Vector3(direction.x, direction.y, direction.z))"
|
|
*/
|
|
template<typename T>
|
|
std::string Ray<T>::ToString() const
|
|
{
|
|
std::ostringstream ss;
|
|
ss << *this;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplies the direction ray with the lambda to get the point along the ray for this parameter
|
|
* \return The point on the ray
|
|
*
|
|
* \param lambda Parameter to obtain a particular point on the ray
|
|
*
|
|
* \see GetPoint
|
|
*/
|
|
template<typename T>
|
|
constexpr Vector3<T> Ray<T>::operator*(T lambda) const
|
|
{
|
|
return GetPoint(lambda);
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the ray to other one
|
|
* \return true if the ray are the same
|
|
*
|
|
* \param rec Other ray to compare with
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator==(const Ray& ray) const
|
|
{
|
|
return direction == ray.direction && origin == ray.origin;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the ray to other one
|
|
* \return false if the ray are the same
|
|
*
|
|
* \param rec Other ray to compare with
|
|
*/
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator!=(const Ray& ray) const
|
|
{
|
|
return !operator==(ray);
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator<(const Ray& ray) const
|
|
{
|
|
if (origin != ray.origin)
|
|
return origin < ray.origin;
|
|
|
|
return direction < ray.direction;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator<=(const Ray& ray) const
|
|
{
|
|
if (origin != ray.origin)
|
|
return origin < ray.origin;
|
|
|
|
return direction <= ray.direction;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator>(const Ray& ray) const
|
|
{
|
|
if (origin != ray.origin)
|
|
return origin > ray.origin;
|
|
|
|
return direction > ray.direction;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::operator>=(const Ray& ray) const
|
|
{
|
|
if (origin != ray.origin)
|
|
return origin > ray.origin;
|
|
|
|
return direction >= ray.direction;
|
|
}
|
|
|
|
template<typename T>
|
|
constexpr bool Ray<T>::ApproxEqual(const Ray& lhs, const Ray& rhs, T maxDifference)
|
|
{
|
|
return lhs.ApproxEqual(rhs, maxDifference);
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (1, 0, 0)
|
|
* \return A ray with position (0, 0, 0) and direction (1, 0, 0)
|
|
*/
|
|
template<typename T>
|
|
constexpr Ray<T> Ray<T>::AxisX()
|
|
{
|
|
return Ray(Vector3<T>::Zero(), Vector3<T>::UnitX());
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (0, 1, 0)
|
|
* \return A ray with position (0, 0, 0) and direction (0, 1, 0)
|
|
*/
|
|
|
|
template<typename T>
|
|
constexpr Ray<T> Ray<T>::AxisY()
|
|
{
|
|
return Ray(Vector3<T>::Zero(), Vector3<T>::UnitY());
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the ray (0, 0, 0), (0, 0, 1)
|
|
* \return A ray with position (0, 0, 0) and direction (0, 0, 1)
|
|
*/
|
|
|
|
template<typename T>
|
|
constexpr Ray<T> Ray<T>::AxisZ()
|
|
{
|
|
return Ray(Vector3<T>::Zero(), Vector3<T>::UnitZ());
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates the ray to other one with a factor of interpolation
|
|
* \return A new ray which is the interpolation of two rectangles
|
|
*
|
|
* \param from Initial ray
|
|
* \param to Target ray
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
|
|
*
|
|
* \see Lerp
|
|
*/
|
|
template<typename T>
|
|
constexpr Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation)
|
|
{
|
|
return Ray<T>(Vector3<T>::Lerp(from.origin, to.origin, interpolation), Vector3<T>::Lerp(from.direction, to.direction, interpolation));
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes a Ray
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param ray Input Ray
|
|
*/
|
|
template<typename T>
|
|
bool Serialize(SerializationContext& context, const Ray<T>& ray, TypeTag<Ray<T>>)
|
|
{
|
|
if (!Serialize(context, "origin", ray.origin))
|
|
return false;
|
|
|
|
if (!Serialize(context, "direction", ray.direction))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes a Ray
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param ray Output Ray
|
|
*/
|
|
template<typename T>
|
|
bool Unserialize(SerializationContext& context, Ray<T>* ray, TypeTag<Ray<T>>)
|
|
{
|
|
if (!Unserialize(context, "origin", &ray->origin))
|
|
return false;
|
|
|
|
if (!Unserialize(context, "direction", &ray->direction))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param ray The ray to output
|
|
*/
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray)
|
|
{
|
|
return out << "Ray(origin: " << ray.origin << ", direction: " << ray.direction << ")";
|
|
}
|
|
}
|
|
|