NazaraEngine/src/Nazara/Physics/PhysObject.cpp

354 lines
8.4 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Physics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Physics/PhysObject.hpp>
#include <Nazara/Physics/Config.hpp>
#include <Nazara/Physics/PhysWorld.hpp>
#include <Newton/Newton.h>
#include <algorithm>
#include <Nazara/Physics/Debug.hpp>
NzPhysObject::NzPhysObject(NzPhysWorld* world, const NzMatrix4f& mat) :
NzPhysObject(world, NzNullGeom::New(), mat)
{
}
NzPhysObject::NzPhysObject(NzPhysWorld* world, NzPhysGeomRef geom, const NzMatrix4f& mat) :
m_matrix(mat),
m_geom(std::move(geom)),
m_forceAccumulator(NzVector3f::Zero()),
m_torqueAccumulator(NzVector3f::Zero()),
m_world(world),
m_gravityFactor(1.f),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
if (!m_geom)
m_geom = NzNullGeom::New();
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
}
NzPhysObject::NzPhysObject(const NzPhysObject& object) :
m_matrix(object.m_matrix),
m_geom(object.m_geom),
m_forceAccumulator(NzVector3f::Zero()),
m_torqueAccumulator(NzVector3f::Zero()),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(0.f)
{
NazaraAssert(m_world, "Invalid world");
NazaraAssert(m_geom, "Invalid geometry");
m_body = NewtonCreateDynamicBody(m_world->GetHandle(), m_geom->GetHandle(m_world), m_matrix);
NewtonBodySetUserData(m_body, this);
SetMass(object.m_mass);
}
NzPhysObject::NzPhysObject(NzPhysObject&& object) :
m_matrix(std::move(object.m_matrix)),
m_forceAccumulator(std::move(object.m_forceAccumulator)),
m_torqueAccumulator(std::move(object.m_torqueAccumulator)),
m_body(object.m_body),
m_geom(std::move(object.m_geom)),
m_world(object.m_world),
m_gravityFactor(object.m_gravityFactor),
m_mass(object.m_mass)
{
object.m_body = nullptr;
}
NzPhysObject::~NzPhysObject()
{
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
}
void NzPhysObject::AddForce(const NzVector3f& force, nzCoordSys coordSys)
{
switch (coordSys)
{
case nzCoordSys_Global:
m_forceAccumulator += force;
break;
case nzCoordSys_Local:
m_forceAccumulator += GetRotation()*force;
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::AddForce(const NzVector3f& force, const NzVector3f& point, nzCoordSys coordSys)
{
switch (coordSys)
{
case nzCoordSys_Global:
m_forceAccumulator += force;
m_torqueAccumulator += NzVector3f::CrossProduct(point - GetMassCenter(nzCoordSys_Global), force);
break;
case nzCoordSys_Local:
AddForce(m_matrix.Transform(force, 0.f), m_matrix.Transform(point));
return;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::AddTorque(const NzVector3f& torque, nzCoordSys coordSys)
{
switch (coordSys)
{
case nzCoordSys_Global:
m_torqueAccumulator += torque;
break;
case nzCoordSys_Local:
m_torqueAccumulator += m_matrix.Transform(torque, 0.f);
break;
}
// On réveille le corps pour que le callback soit appelé et que les forces soient appliquées
NewtonBodySetSleepState(m_body, 0);
}
void NzPhysObject::EnableAutoSleep(bool autoSleep)
{
NewtonBodySetAutoSleep(m_body, autoSleep);
}
NzBoxf NzPhysObject::GetAABB() const
{
NzVector3f min, max;
NewtonBodyGetAABB(m_body, min, max);
return NzBoxf(min, max);
}
NzVector3f NzPhysObject::GetAngularVelocity() const
{
NzVector3f angularVelocity;
NewtonBodyGetOmega(m_body, angularVelocity);
return angularVelocity;
}
const NzPhysGeomRef& NzPhysObject::GetGeom() const
{
return m_geom;
}
float NzPhysObject::GetGravityFactor() const
{
return m_gravityFactor;
}
NewtonBody* NzPhysObject::GetHandle() const
{
return m_body;
}
float NzPhysObject::GetMass() const
{
return m_mass;
}
NzVector3f NzPhysObject::GetMassCenter(nzCoordSys coordSys) const
{
NzVector3f center;
NewtonBodyGetCentreOfMass(m_body, center);
switch (coordSys)
{
case nzCoordSys_Global:
center = m_matrix.Transform(center);
break;
case nzCoordSys_Local:
break; // Aucune opération à effectuer sur le centre de rotation
}
return center;
}
const NzMatrix4f& NzPhysObject::GetMatrix() const
{
return m_matrix;
}
NzVector3f NzPhysObject::GetPosition() const
{
return m_matrix.GetTranslation();
}
NzQuaternionf NzPhysObject::GetRotation() const
{
return m_matrix.GetRotation();
}
NzVector3f NzPhysObject::GetVelocity() const
{
NzVector3f velocity;
NewtonBodyGetVelocity(m_body, velocity);
return velocity;
}
bool NzPhysObject::IsAutoSleepEnabled() const
{
return NewtonBodyGetAutoSleep(m_body) != 0;
}
bool NzPhysObject::IsMoveable() const
{
return m_mass > 0.f;
}
bool NzPhysObject::IsSleeping() const
{
return NewtonBodyGetSleepState(m_body) != 0;
}
void NzPhysObject::SetAngularVelocity(const NzVector3f& angularVelocity)
{
NewtonBodySetOmega(m_body, angularVelocity);
}
void NzPhysObject::SetGeom(NzPhysGeomRef geom)
{
if (m_geom.Get() != geom)
{
if (geom)
m_geom = geom;
else
m_geom = NzNullGeom::New();
NewtonBodySetCollision(m_body, m_geom->GetHandle(m_world));
}
}
void NzPhysObject::SetGravityFactor(float gravityFactor)
{
m_gravityFactor = gravityFactor;
}
void NzPhysObject::SetMass(float mass)
{
if (m_mass > 0.f)
{
float Ix, Iy, Iz;
NewtonBodyGetMassMatrix(m_body, &m_mass, &Ix, &Iy, &Iz);
float scale = mass/m_mass;
NewtonBodySetMassMatrix(m_body, mass, Ix*scale, Iy*scale, Iz*scale);
}
else if (mass > 0.f)
{
NzVector3f inertia, origin;
m_geom->ComputeInertialMatrix(&inertia, &origin);
NewtonBodySetCentreOfMass(m_body, &origin.x);
NewtonBodySetMassMatrix(m_body, mass, inertia.x*mass, inertia.y*mass, inertia.z*mass);
NewtonBodySetForceAndTorqueCallback(m_body, &ForceAndTorqueCallback);
NewtonBodySetTransformCallback(m_body, &TransformCallback);
}
m_mass = mass;
}
void NzPhysObject::SetMassCenter(const NzVector3f& center)
{
if (m_mass > 0.f)
NewtonBodySetCentreOfMass(m_body, center);
}
void NzPhysObject::SetPosition(const NzVector3f& position)
{
m_matrix.SetTranslation(position);
UpdateBody();
}
void NzPhysObject::SetRotation(const NzQuaternionf& rotation)
{
m_matrix.SetRotation(rotation);
UpdateBody();
}
void NzPhysObject::SetVelocity(const NzVector3f& velocity)
{
NewtonBodySetVelocity(m_body, velocity);
}
NzPhysObject& NzPhysObject::operator=(const NzPhysObject& object)
{
NzPhysObject physObj(object);
return operator=(std::move(physObj));
}
void NzPhysObject::UpdateBody()
{
NewtonBodySetMatrix(m_body, m_matrix);
/*for (std::set<PhysObjectListener*>::iterator it = m_listeners.begin(); it != m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(this);*/
}
NzPhysObject& NzPhysObject::operator=(NzPhysObject&& object)
{
if (m_body)
NewtonDestroyBody(m_world->GetHandle(), m_body);
m_body = object.m_body;
m_forceAccumulator = std::move(object.m_forceAccumulator);
m_geom = std::move(object.m_geom);
m_gravityFactor = object.m_gravityFactor;
m_mass = object.m_mass;
m_matrix = std::move(object.m_matrix);
m_torqueAccumulator = std::move(object.m_torqueAccumulator);
m_world = object.m_world;
object.m_body = nullptr;
return *this;
}
void NzPhysObject::ForceAndTorqueCallback(const NewtonBody* body, float timeStep, int threadIndex)
{
NazaraUnused(timeStep);
NazaraUnused(threadIndex);
NzPhysObject* me = static_cast<NzPhysObject*>(NewtonBodyGetUserData(body));
if (!NzNumberEquals(me->m_gravityFactor, 0.f))
me->m_forceAccumulator += me->m_world->GetGravity() * me->m_gravityFactor * me->m_mass;
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectApplyForce(me);*/
NewtonBodySetForce(body, me->m_forceAccumulator);
NewtonBodySetTorque(body, me->m_torqueAccumulator);
me->m_torqueAccumulator.Set(0.f);
me->m_forceAccumulator.Set(0.f);
///TODO: Implanter la force gyroscopique?
}
void NzPhysObject::TransformCallback(const NewtonBody* body, const float* matrix, int threadIndex)
{
NazaraUnused(threadIndex);
NzPhysObject* me = static_cast<NzPhysObject*>(NewtonBodyGetUserData(body));
me->m_matrix.Set(matrix);
/*for (std::set<PhysObjectListener*>::iterator it = me->m_listeners.begin(); it != me->m_listeners.end(); ++it)
(*it)->PhysObjectOnUpdate(me);*/
}