NazaraEngine/tests/Engine/Physics2D/RigidBody2D.cpp

327 lines
8.6 KiB
C++

#include <Nazara/Physics2D/RigidBody2D.hpp>
#include <Nazara/Physics2D/PhysWorld2D.hpp>
#include <Catch/catch.hpp>
Nz::RigidBody2D CreateBody(Nz::PhysWorld2D& world);
void EQUALITY(const Nz::RigidBody2D& left, const Nz::RigidBody2D& right);
void EQUALITY(const Nz::Rectf& left, const Nz::Rectf& right);
SCENARIO("RigidBody2D", "[PHYSICS2D][RIGIDBODY2D]")
{
GIVEN("A physic world and a rigid body")
{
Nz::PhysWorld2D world;
Nz::Vector2f positionAABB(3.f, 4.f);
Nz::Rectf aabb(positionAABB.x, positionAABB.y, 1.f, 2.f);
Nz::Collider2DRef box = Nz::BoxCollider2D::New(aabb);
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, box);
float angularVelocity = 0.2f;
body.SetAngularVelocity(angularVelocity);
Nz::Vector2f massCenter(5.f, 7.f);
body.SetMassCenter(massCenter);
Nz::Vector2f position(9.f, 1.f);
body.SetPosition(position);
float rotation = 0.1f;
body.SetRotation(rotation);
Nz::Vector2f velocity(-4.f, -2.f);
body.SetVelocity(velocity);
bool userdata = false;
body.SetUserdata(&userdata);
world.Step(1.f);
WHEN("We copy construct the body")
{
body.AddForce(Nz::Vector2f(3.f, 5.f));
Nz::RigidBody2D copiedBody(body);
EQUALITY(copiedBody, body);
world.Step(1.f);
EQUALITY(copiedBody, body);
}
WHEN("We move construct the body")
{
Nz::RigidBody2D copiedBody(body);
Nz::RigidBody2D movedBody(std::move(body));
EQUALITY(movedBody, copiedBody);
}
WHEN("We copy assign the body")
{
Nz::RigidBody2D copiedBody(&world, 0.f);
copiedBody = body;
EQUALITY(copiedBody, body);
}
WHEN("We move assign the body")
{
Nz::RigidBody2D copiedBody(body);
Nz::RigidBody2D movedBody(&world, 0.f);
movedBody = std::move(body);
EQUALITY(movedBody, copiedBody);
}
WHEN("We set a new geometry")
{
float radius = 5.f;
body.SetGeom(Nz::CircleCollider2D::New(radius));
world.Step(1.f);
THEN("The aabb should be updated")
{
position = body.GetPosition();
Nz::Rectf circleAABB(position.x - radius, position.y - radius, 2.f * radius, 2.f* radius);
EQUALITY(body.GetAABB(), circleAABB);
}
}
}
GIVEN("A physic world")
{
Nz::PhysWorld2D world;
Nz::Rectf aabb(3.f, 4.f, 1.f, 2.f);
WHEN("We get a rigid body from a function")
{
std::vector<Nz::RigidBody2D> tmp;
tmp.push_back(CreateBody(world));
tmp.push_back(CreateBody(world));
world.Step(1.f);
THEN("They should be valid")
{
CHECK(tmp[0].GetAABB() == aabb);
CHECK(tmp[1].GetAABB() == aabb);
}
}
}
GIVEN("A physic world and a rigid body")
{
Nz::PhysWorld2D world;
Nz::Vector2f positionAABB(3.f, 4.f);
Nz::Rectf aabb(positionAABB.x, positionAABB.y, 1.f, 2.f);
Nz::Collider2DRef box = Nz::BoxCollider2D::New(aabb);
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, box);
bool userData = false;
body.SetUserdata(&userData);
Nz::Vector2f position = Nz::Vector2f::Zero();
world.Step(1.f);
WHEN("We retrieve standard information")
{
THEN("We expect those to be true")
{
CHECK(body.GetAABB() == aabb);
CHECK(body.GetAngularVelocity() == Approx(0.f));
CHECK(body.GetCenterOfGravity() == Nz::Vector2f::Zero());
CHECK(body.GetGeom() == box);
CHECK(body.GetMass() == Approx(mass));
CHECK(body.GetPosition() == position);
CHECK(body.GetRotation() == Approx(0.f));
CHECK(body.GetUserdata() == &userData);
CHECK(body.GetVelocity() == Nz::Vector2f::Zero());
CHECK(body.IsKinematic() == false);
CHECK(body.IsSleeping() == false);
}
}
WHEN("We set a velocity")
{
Nz::Vector2f velocity(Nz::Vector2f::Unit());
body.SetVelocity(velocity);
position += velocity;
world.Step(1.f);
THEN("We expect those to be true")
{
aabb.Translate(velocity);
CHECK(body.GetAABB() == aabb);
CHECK(body.GetCenterOfGravity() == Nz::Vector2f::Zero());
CHECK(body.GetPosition() == position);
CHECK(body.GetVelocity() == velocity);
}
AND_THEN("We apply an impulse in the opposite direction")
{
body.AddImpulse(-velocity);
world.Step(1.f);
REQUIRE(body.GetVelocity() == Nz::Vector2f::Zero());
}
}
WHEN("We set an angular velocity")
{
float angularSpeed = Nz::FromDegrees(90.f);
body.SetAngularVelocity(angularSpeed);
world.Step(1.f);
THEN("We expect those to be true")
{
CHECK(body.GetAngularVelocity() == Approx(angularSpeed));
CHECK(body.GetRotation() == Approx(angularSpeed));
CHECK(body.GetAABB() == Nz::Rectf(-6.f, 3.f, 2.f, 1.f));
world.Step(1.f);
CHECK(body.GetRotation() == Approx(2.f * angularSpeed));
CHECK(body.GetAABB() == Nz::Rectf(-4.f, -6.f, 1.f, 2.f));
world.Step(1.f);
CHECK(body.GetRotation() == Approx(3.f * angularSpeed));
CHECK(body.GetAABB() == Nz::Rectf(4.f, -4.f, 2.f, 1.f));
world.Step(1.f);
CHECK(body.GetRotation() == Approx(4.f * angularSpeed));
}
}
WHEN("We apply a torque")
{
float angularSpeed = Nz::DegreeToRadian(90.f);
body.AddTorque(angularSpeed);
world.Step(1.f);
THEN("It is also counter-clockwise")
{
CHECK(body.GetAngularVelocity() >= 0.f);
CHECK(body.GetRotation() >= 0.f);
}
}
}
GIVEN("A physic world and a rigid body of circle")
{
Nz::PhysWorld2D world;
Nz::Vector2f position(3.f, 4.f);
float radius = 5.f;
Nz::Collider2DRef circle = Nz::CircleCollider2D::New(radius, position);
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, circle);
world.Step(1.f);
WHEN("We ask for the aabb of the circle")
{
THEN("We expect this to be true")
{
Nz::Rectf circleAABB(position.x - radius, position.y - radius, 2.f * radius, 2.f* radius);
REQUIRE(body.GetAABB() == circleAABB);
}
}
}
GIVEN("A physic world and a rigid body of compound")
{
Nz::PhysWorld2D world;
Nz::Rectf aabb(0.f, 0.f, 1.f, 1.f);
Nz::BoxCollider2DRef box1 = Nz::BoxCollider2D::New(aabb);
aabb.Translate(Nz::Vector2f::Unit());
Nz::BoxCollider2DRef box2 = Nz::BoxCollider2D::New(aabb);
std::vector<Nz::Collider2DRef> colliders;
colliders.push_back(box1);
colliders.push_back(box2);
Nz::CompoundCollider2DRef compound = Nz::CompoundCollider2D::New(colliders);
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, compound);
world.Step(1.f);
WHEN("We ask for the aabb of the compound")
{
THEN("We expect this to be true")
{
Nz::Rectf compoundAABB(0.f, 0.f, 2.f, 2.f);
REQUIRE(body.GetAABB() == compoundAABB);
}
}
}
GIVEN("A physic world and a rigid body of circle")
{
Nz::PhysWorld2D world;
std::vector<Nz::Vector2f> vertices;
vertices.push_back(Nz::Vector2f(0.f, 0.f));
vertices.push_back(Nz::Vector2f(0.f, 1.f));
vertices.push_back(Nz::Vector2f(1.f, 1.f));
vertices.push_back(Nz::Vector2f(1.f, 0.f));
Nz::SparsePtr<const Nz::Vector2f> sparsePtr(vertices.data());
Nz::ConvexCollider2DRef convex = Nz::ConvexCollider2D::New(sparsePtr, vertices.size());
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, convex);
world.Step(1.f);
WHEN("We ask for the aabb of the convex")
{
THEN("We expect this to be true")
{
Nz::Rectf convexAABB(0.f, 0.f, 1.f, 1.f);
REQUIRE(body.GetAABB() == convexAABB);
}
}
}
GIVEN("A physic world and a rigid body of segment")
{
Nz::PhysWorld2D world;
Nz::Vector2f positionA(3.f, 4.f);
Nz::Vector2f positionB(1.f, -4.f);
Nz::Collider2DRef segment = Nz::SegmentCollider2D::New(positionA, positionB, 0.f);
float mass = 1.f;
Nz::RigidBody2D body(&world, mass, segment);
world.Step(1.f);
WHEN("We ask for the aabb of the segment")
{
THEN("We expect this to be true")
{
Nz::Rectf segmentAABB(positionA, positionB);
REQUIRE(body.GetAABB() == segmentAABB);
}
}
}
}
Nz::RigidBody2D CreateBody(Nz::PhysWorld2D& world)
{
Nz::Vector2f positionAABB(3.f, 4.f);
Nz::Rectf aabb(positionAABB.x, positionAABB.y, 1.f, 2.f);
Nz::Collider2DRef box = Nz::BoxCollider2D::New(aabb);
float mass = 1.f;
return Nz::RigidBody2D(&world, mass, box);
}
void EQUALITY(const Nz::RigidBody2D& left, const Nz::RigidBody2D& right)
{
CHECK(left.GetAABB() == right.GetAABB());
CHECK(left.GetAngularVelocity() == Approx(right.GetAngularVelocity()));
CHECK(left.GetCenterOfGravity() == right.GetCenterOfGravity());
CHECK(left.GetGeom() == right.GetGeom());
CHECK(left.GetHandle() != right.GetHandle());
CHECK(left.GetMass() == Approx(right.GetMass()));
CHECK(left.GetPosition() == right.GetPosition());
CHECK(left.GetRotation() == Approx(right.GetRotation()));
CHECK(left.GetUserdata() == right.GetUserdata());
CHECK(left.GetVelocity() == right.GetVelocity());
}
void EQUALITY(const Nz::Rectf& left, const Nz::Rectf& right)
{
CHECK(left.x == Approx(right.x));
CHECK(left.y == Approx(right.y));
CHECK(left.width == Approx(right.width));
CHECK(left.height == Approx(right.height));
}