NazaraEngine/include/Nazara/Math/Ray.inl

341 lines
8.8 KiB
C++

// Copyright (C) 2014 Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
template<typename T>
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
}
template<typename T>
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
{
Set(Origin, Direction);
}
template<typename T>
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
Set(planeOne, planeTwo);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
template<typename U>
NzRay<T>::NzRay(const NzRay<U>& ray)
{
Set(ray);
}
template<typename T>
NzVector3<T> NzRay<T>::GetClosestPoint(const NzVector3<T>& point) const
{
NzVector3<T> delta = point - origin;
T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction);
return GetPoint(proj/vsq);
}
template<typename T>
NzVector3<T> NzRay<T>::GetDirection() const
{
return direction;
}
template<typename T>
NzVector3<T> NzRay<T>::GetOrigin() const
{
return origin;
}
template<typename T>
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
{
return NzVector3<T>(origin + direction * lambda);
}
template<typename T>
bool NzRay<T>::Intersect(const NzBox<T>& box, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
// Slab method
#if NAZARA_MATH_SAFE
if (NzNumberEquals(direction.x, F(0.0)) || NzNumberEquals(direction.y, F(0.0)) || NzNumberEquals(direction.z, F(0.0)))
{
NazaraWarning("Division by zero !"); // The algorithm is still correct.
}
#endif
T tx1 = (box.x - origin.x) / direction.x;
T tx2 = (box.x + box.width - origin.x) / direction.x;
T tmin = std::min(tx1, tx2);
T tmax = std::max(tx1, tx2);
T ty1 = (box.y - origin.y) / direction.y;
T ty2 = (box.y + box.height - origin.y) / direction.y;
tmin = std::max(tmin, std::min(ty1, ty2));
tmax = std::min(tmax, std::max(ty1, ty2));
T tz1 = (box.z - origin.z) / direction.z;
T tz2 = (box.z + box.depth - origin.z) / direction.z;
tmin = std::max(tmin, std::min(tz1, tz2));
tmax = std::min(tmax, std::max(tz1, tz2));
if (hitPoint)
hitPoint->Set(GetPoint(tmin));
if (hitSecondPoint)
hitSecondPoint->Set(GetPoint(tmax));
return tmax >= std::max(F(0.0), tmin) && tmin < INFINITY;
}
template<typename T>
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
NzVector3<T> width = (orientedBox.GetCorner(nzCorner_NearLeftBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
NzVector3<T> height = (orientedBox.GetCorner(nzCorner_FarLeftTop) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
NzVector3<T> depth = (orientedBox.GetCorner(nzCorner_FarRightBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
// Construction of the inverse of the matrix who did the rotation -> orthogonal matrix.
NzMatrix4<T> transformation(width.x, height.x, depth.x, F(0.0),
width.y, height.y, depth.y, F(0.0),
width.z, height.z, depth.z, F(0.0),
F(0.0), F(0.0), F(0.0), F(1.0));
// Reduction to aabb problem
NzVector3<T> newOrigin = transformation.Transform(origin);
NzVector3<T> newDirection = transformation.Transform(direction);
NzVector3<T> tmp, tmp2;
if (NzRay<T>(newOrigin, newDirection).Intersect(NzBox<T>(orientedBox.GetCorner(nzCorner_NearRightTop), orientedBox.GetCorner(nzCorner_FarLeftBottom)), &tmp, &tmp2))
{
if (hitPoint)
{
transformation.Transpose();
hitPoint->Set(transformation.Transform(tmp));
if (hitSecondPoint)
hitSecondPoint->Set(transformation.Transform(tmp2));
}
return true;
}
return false;
}
template<typename T>
bool NzRay<T>::Intersect(const NzPlane<T>& plane, NzVector3<T> * hitPoint) const
{
T divisor = plane.normal.DotProduct(direction);
if (NzNumberEquals(divisor, F(0.0)))
return false; // perpendicular
if (!hitPoint)
return true;
T lambda = - (plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax+by+cz=d
hitPoint->Set(GetPoint(lambda));
return true;
}
template<typename T>
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
{
NzVector3<T> distanceCenterOrigin = sphere.GetPosition() - origin;
T length = distanceCenterOrigin.DotProduct(direction);
if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center
T squaredDistance = distanceCenterOrigin.GetSquaredLength() - length * length;
T squaredRadius = sphere.GetRadius() * sphere.GetRadius();
if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius
if (!hitPoint)
return true;
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (hitPoint)
hitPoint->Set(GetPoint(length - deltaLambda));
if (hitSecondPoint)
hitSecondPoint->Set(GetPoint(length + deltaLambda));
return true;
}
template<typename T>
NzVector3<T> NzRay<T>::operator*(T lambda) const
{
return GetPoint(lambda);
}
template<typename T>
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{
direction = NzVector3<T>(directionX, directionY, directionZ);
origin = NzVector3<T>(X, Y, Z);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
{
direction = NzVector3<T>(Direction);
origin = NzVector3<T>(Origin);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
{
T termOne = planeOne.normal.GetLength();
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
T termFour = planeTwo.normal.GetLength();
T det = termOne * termFour - termTwo * termTwo;
#if NAZARA_MATH_SAFE
if (NzNumberEquals(det, F(0.0)))
{
NzString error("Planes are parallel.");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T invdet = F(1.0) / det;
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
direction = planeOne.normal.CrossProduct(planeTwo.normal);
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
{
direction = NzVector3<T>(Direction);
origin = NzVector3<T>(Origin);
return *this;
}
template<typename T>
template<typename U>
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
{
direction = NzVector3<T>(ray.direction);
origin = NzVector3<T>(ray.origin);
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
{
std::memcpy(this, &ray, sizeof(NzRay));
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::SetDirection(const NzVector3<T>& Direction)
{
direction = Direction;
return *this;
}
template<typename T>
NzRay<T>& NzRay<T>::SetOrigin(const NzVector3<T>& Origin)
{
origin = Origin;
return *this;
}
template<typename T>
NzString NzRay<T>::ToString() const
{
NzStringStream ss;
return ss << "Ray(" << origin.x << ", " << origin.y << ", " << origin.z << " | direction: " << direction.x << ", " << direction.y << ", " << direction.z << ')';
}
template<typename T>
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
{
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
}
template<typename T>
NzRay<T> NzRay<T>::UnitX()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
}
template<typename T>
NzRay<T> NzRay<T>::UnitY()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
}
template<typename T>
NzRay<T> NzRay<T>::UnitZ()
{
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
{
return out << ray.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>