341 lines
8.8 KiB
C++
341 lines
8.8 KiB
C++
// Copyright (C) 2014 Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Mathematics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/StringStream.hpp>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
#define F(a) static_cast<T>(a)
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
|
|
{
|
|
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const T Origin[3], const T Direction[3])
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>::NzRay(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
|
{
|
|
Set(planeOne, planeTwo);
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>::NzRay(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
|
{
|
|
Set(Origin, Direction);
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>::NzRay(const NzRay<U>& ray)
|
|
{
|
|
Set(ray);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::GetClosestPoint(const NzVector3<T>& point) const
|
|
{
|
|
NzVector3<T> delta = point - origin;
|
|
T vsq = direction.GetSquaredLength();
|
|
T proj = delta.DotProduct(direction);
|
|
|
|
return GetPoint(proj/vsq);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::GetDirection() const
|
|
{
|
|
return direction;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::GetOrigin() const
|
|
{
|
|
return origin;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::GetPoint(T lambda) const
|
|
{
|
|
return NzVector3<T>(origin + direction * lambda);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzBox<T>& box, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
|
{
|
|
// Slab method
|
|
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(direction.x, F(0.0)) || NzNumberEquals(direction.y, F(0.0)) || NzNumberEquals(direction.z, F(0.0)))
|
|
{
|
|
NazaraWarning("Division by zero !"); // The algorithm is still correct.
|
|
}
|
|
#endif
|
|
|
|
T tx1 = (box.x - origin.x) / direction.x;
|
|
T tx2 = (box.x + box.width - origin.x) / direction.x;
|
|
|
|
T tmin = std::min(tx1, tx2);
|
|
T tmax = std::max(tx1, tx2);
|
|
|
|
T ty1 = (box.y - origin.y) / direction.y;
|
|
T ty2 = (box.y + box.height - origin.y) / direction.y;
|
|
|
|
tmin = std::max(tmin, std::min(ty1, ty2));
|
|
tmax = std::min(tmax, std::max(ty1, ty2));
|
|
|
|
T tz1 = (box.z - origin.z) / direction.z;
|
|
T tz2 = (box.z + box.depth - origin.z) / direction.z;
|
|
|
|
tmin = std::max(tmin, std::min(tz1, tz2));
|
|
tmax = std::min(tmax, std::max(tz1, tz2));
|
|
|
|
if (hitPoint)
|
|
hitPoint->Set(GetPoint(tmin));
|
|
if (hitSecondPoint)
|
|
hitSecondPoint->Set(GetPoint(tmax));
|
|
|
|
return tmax >= std::max(F(0.0), tmin) && tmin < INFINITY;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzOrientedBox<T>& orientedBox, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
|
{
|
|
NzVector3<T> width = (orientedBox.GetCorner(nzCorner_NearLeftBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
|
NzVector3<T> height = (orientedBox.GetCorner(nzCorner_FarLeftTop) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
|
NzVector3<T> depth = (orientedBox.GetCorner(nzCorner_FarRightBottom) - orientedBox.GetCorner(nzCorner_FarLeftBottom)).Normalize();
|
|
|
|
// Construction of the inverse of the matrix who did the rotation -> orthogonal matrix.
|
|
NzMatrix4<T> transformation(width.x, height.x, depth.x, F(0.0),
|
|
width.y, height.y, depth.y, F(0.0),
|
|
width.z, height.z, depth.z, F(0.0),
|
|
F(0.0), F(0.0), F(0.0), F(1.0));
|
|
|
|
// Reduction to aabb problem
|
|
NzVector3<T> newOrigin = transformation.Transform(origin);
|
|
NzVector3<T> newDirection = transformation.Transform(direction);
|
|
|
|
NzVector3<T> tmp, tmp2;
|
|
if (NzRay<T>(newOrigin, newDirection).Intersect(NzBox<T>(orientedBox.GetCorner(nzCorner_NearRightTop), orientedBox.GetCorner(nzCorner_FarLeftBottom)), &tmp, &tmp2))
|
|
{
|
|
if (hitPoint)
|
|
{
|
|
transformation.Transpose();
|
|
hitPoint->Set(transformation.Transform(tmp));
|
|
if (hitSecondPoint)
|
|
hitSecondPoint->Set(transformation.Transform(tmp2));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzPlane<T>& plane, NzVector3<T> * hitPoint) const
|
|
{
|
|
T divisor = plane.normal.DotProduct(direction);
|
|
|
|
if (NzNumberEquals(divisor, F(0.0)))
|
|
return false; // perpendicular
|
|
|
|
if (!hitPoint)
|
|
return true;
|
|
|
|
T lambda = - (plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax+by+cz=d
|
|
hitPoint->Set(GetPoint(lambda));
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzRay<T>::Intersect(const NzSphere<T>& sphere, NzVector3<T> * hitPoint, NzVector3<T> * hitSecondPoint) const
|
|
{
|
|
NzVector3<T> distanceCenterOrigin = sphere.GetPosition() - origin;
|
|
T length = distanceCenterOrigin.DotProduct(direction);
|
|
|
|
if (length < F(0.0))
|
|
return false; // ray is perpendicular to the vector origin - center
|
|
|
|
T squaredDistance = distanceCenterOrigin.GetSquaredLength() - length * length;
|
|
|
|
T squaredRadius = sphere.GetRadius() * sphere.GetRadius();
|
|
|
|
if (squaredDistance > squaredRadius)
|
|
return false; // if the ray is further than the radius
|
|
|
|
if (!hitPoint)
|
|
return true;
|
|
|
|
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
|
|
|
|
if (hitPoint)
|
|
hitPoint->Set(GetPoint(length - deltaLambda));
|
|
if (hitSecondPoint)
|
|
hitSecondPoint->Set(GetPoint(length + deltaLambda));
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzRay<T>::operator*(T lambda) const
|
|
{
|
|
return GetPoint(lambda);
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
|
|
{
|
|
direction = NzVector3<T>(directionX, directionY, directionZ);
|
|
origin = NzVector3<T>(X, Y, Z);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const T Origin[3], const T Direction[3])
|
|
{
|
|
direction = NzVector3<T>(Direction);
|
|
origin = NzVector3<T>(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzVector3<T>& Origin, const NzVector3<T>& Direction)
|
|
{
|
|
direction = Direction;
|
|
origin = Origin;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzPlane<T>& planeOne, const NzPlane<T>& planeTwo)
|
|
{
|
|
T termOne = planeOne.normal.GetLength();
|
|
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
|
|
T termFour = planeTwo.normal.GetLength();
|
|
T det = termOne * termFour - termTwo * termTwo;
|
|
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(det, F(0.0)))
|
|
{
|
|
|
|
NzString error("Planes are parallel.");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
T invdet = F(1.0) / det;
|
|
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
|
|
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
|
|
|
|
direction = planeOne.normal.CrossProduct(planeTwo.normal);
|
|
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>& NzRay<T>::Set(const NzVector3<U>& Origin, const NzVector3<U>& Direction)
|
|
{
|
|
direction = NzVector3<T>(Direction);
|
|
origin = NzVector3<T>(Origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzRay<T>& NzRay<T>::Set(const NzRay<U>& ray)
|
|
{
|
|
direction = NzVector3<T>(ray.direction);
|
|
origin = NzVector3<T>(ray.origin);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::Set(const NzRay& ray)
|
|
{
|
|
std::memcpy(this, &ray, sizeof(NzRay));
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::SetDirection(const NzVector3<T>& Direction)
|
|
{
|
|
direction = Direction;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T>& NzRay<T>::SetOrigin(const NzVector3<T>& Origin)
|
|
{
|
|
origin = Origin;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzString NzRay<T>::ToString() const
|
|
{
|
|
NzStringStream ss;
|
|
|
|
return ss << "Ray(" << origin.x << ", " << origin.y << ", " << origin.z << " | direction: " << direction.x << ", " << direction.y << ", " << direction.z << ')';
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::Lerp(const NzRay& from, const NzRay& to, T interpolation)
|
|
{
|
|
return NzRay<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::UnitX()
|
|
{
|
|
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitX());
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::UnitY()
|
|
{
|
|
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitY());
|
|
}
|
|
|
|
template<typename T>
|
|
NzRay<T> NzRay<T>::UnitZ()
|
|
{
|
|
return NzRay(NzVector3<T>::Zero(), NzVector3<T>::UnitZ());
|
|
}
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const NzRay<T>& ray)
|
|
{
|
|
return out << ray.ToString();
|
|
}
|
|
|
|
#undef F
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|