NazaraEngine/src/Nazara/Utility/Formats/MD5MeshLoader.cpp

373 lines
13 KiB
C++

// Copyright (C) 2023 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
// This file is part of the "Nazara Engine - Utility module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Utility/Formats/MD5MeshLoader.hpp>
#include <Nazara/Utility/IndexIterator.hpp>
#include <Nazara/Utility/IndexMapper.hpp>
#include <Nazara/Utility/Joint.hpp>
#include <Nazara/Utility/MaterialData.hpp>
#include <Nazara/Utility/Mesh.hpp>
#include <Nazara/Utility/SkeletalMesh.hpp>
#include <Nazara/Utility/Skeleton.hpp>
#include <Nazara/Utility/StaticMesh.hpp>
#include <Nazara/Utility/VertexMapper.hpp>
#include <Nazara/Utility/Formats/MD5MeshParser.hpp>
#include <memory>
#include <Nazara/Utility/Debug.hpp>
namespace Nz
{
namespace
{
bool IsMD5MeshSupported(std::string_view extension)
{
return (extension == ".md5mesh");
}
Result<std::shared_ptr<Mesh>, ResourceLoadingError> LoadMD5Mesh(Stream& stream, const MeshParams& parameters)
{
MD5MeshParser parser(stream);
UInt64 streamPos = stream.GetCursorPos();
if (!parser.Check())
return Err(ResourceLoadingError::Unrecognized);
stream.SetCursorPos(streamPos);
if (!parser.Parse())
{
NazaraError("MD5Mesh parser failed");
return Err(ResourceLoadingError::DecodingError);
}
UInt32 maxWeightCount = 4;
if (auto result = parameters.custom.GetIntegerParameter("MaxWeightCount"))
{
maxWeightCount = SafeCast<UInt32>(result.GetValue());
if (maxWeightCount > 4)
{
NazaraWarning("MaxWeightCount cannot be over 4");
maxWeightCount = 4;
}
}
// Pour que le squelette soit correctement aligné, il faut appliquer un quaternion "de correction" aux joints à la base du squelette
Quaternionf rotationQuat = Quaternionf::RotationBetween(Vector3f::UnitX(), Vector3f::Forward()) *
Quaternionf::RotationBetween(Vector3f::UnitZ(), Vector3f::Up());
std::filesystem::path baseDir = stream.GetDirectory();
// Le hellknight de Doom 3 fait ~120 unités, et il est dit qu'il fait trois mètres
// Nous réduisons donc la taille générale des fichiers MD5 de 1/40
Matrix4f matrix = Matrix4f::Transform(Nz::Vector3f::Zero(), rotationQuat, Vector3f(1.f / 40.f));
rotationQuat = Quaternionf::Identity();
const MD5MeshParser::Joint* joints = parser.GetJoints();
const MD5MeshParser::Mesh* meshes = parser.GetMeshes();
UInt32 jointCount = parser.GetJointCount();
UInt32 meshCount = parser.GetMeshCount();
if (parameters.animated)
{
std::shared_ptr<Mesh> mesh = std::make_shared<Mesh>();
mesh->CreateSkeletal(jointCount);
Skeleton* skeleton = mesh->GetSkeleton();
for (UInt32 i = 0; i < jointCount; ++i)
{
Joint* joint = skeleton->GetJoint(i);
int parent = joints[i].parent;
if (parent >= 0)
joint->SetParent(skeleton->GetJoint(parent));
joint->SetInverseBindMatrix(Matrix4f::TransformInverse(joints[i].bindPos, joints[i].bindOrient));
joint->SetName(joints[i].name);
}
mesh->SetMaterialCount(meshCount);
for (UInt32 i = 0; i < meshCount; ++i)
{
const MD5MeshParser::Mesh& md5Mesh = meshes[i];
UInt32 indexCount = SafeCast<UInt32>(md5Mesh.triangles.size() * 3);
UInt32 vertexCount = SafeCast<UInt32>(md5Mesh.vertices.size());
bool largeIndices = (vertexCount > std::numeric_limits<UInt16>::max());
std::shared_ptr<IndexBuffer> indexBuffer = std::make_shared<IndexBuffer>((largeIndices) ? IndexType::U32 : IndexType::U16, indexCount, parameters.indexBufferFlags, parameters.bufferFactory);
std::shared_ptr<VertexBuffer> vertexBuffer = std::make_shared<VertexBuffer>(VertexDeclaration::Get(VertexLayout::XYZ_Normal_UV_Tangent_Skinning), UInt32(vertexCount), parameters.vertexBufferFlags, parameters.bufferFactory);
// Index buffer
IndexMapper indexMapper(*indexBuffer);
// Le format définit un set de triangles nous permettant de retrouver facilement les indices
// Cependant les sommets des triangles ne sont pas spécifiés dans le même ordre que ceux du moteur
// (On parle ici de winding)
UInt32 index = 0;
for (const MD5MeshParser::Triangle& triangle : md5Mesh.triangles)
{
// On les respécifie dans le bon ordre (inversion du winding)
indexMapper.Set(index++, triangle.x);
indexMapper.Set(index++, triangle.z);
indexMapper.Set(index++, triangle.y);
}
indexMapper.Unmap();
if (parameters.optimizeIndexBuffers)
indexBuffer->Optimize();
// Vertex buffer
struct Weight
{
float bias;
unsigned int jointIndex;
};
std::vector<Weight> tempWeights;
VertexMapper vertexMapper(*vertexBuffer);
auto posPtr = vertexMapper.GetComponentPtr<Vector3f>(VertexComponent::Position);
auto jointIndicesPtr = vertexMapper.GetComponentPtr<Vector4i32>(VertexComponent::JointIndices);
auto jointWeightPtr = vertexMapper.GetComponentPtr<Vector4f>(VertexComponent::JointWeights);
auto uvPtr = vertexMapper.GetComponentPtr<Vector2f>(VertexComponent::TexCoord);
for (const MD5MeshParser::Vertex& vertex : md5Mesh.vertices)
{
// Skinning MD5 (Formule d'Id Tech)
Vector3f finalPos(Vector3f::Zero());
// On stocke tous les poids dans le tableau temporaire en même temps qu'on calcule la position finale du sommet.
tempWeights.resize(vertex.weightCount);
for (unsigned int weightIndex = 0; weightIndex < vertex.weightCount; ++weightIndex)
{
const MD5MeshParser::Weight& weight = md5Mesh.weights[vertex.startWeight + weightIndex];
const MD5MeshParser::Joint& joint = joints[weight.joint];
finalPos += (joint.bindPos + joint.bindOrient * weight.pos) * weight.bias;
// Avant d'ajouter les poids, il faut s'assurer qu'il n'y en ait pas plus que le maximum supporté
// et dans le cas contraire, garder les poids les plus importants et les renormaliser
tempWeights[weightIndex] = {weight.bias, weight.joint};
}
// Avons nous plus de poids que le moteur ne peut en supporter ?
UInt32 weightCount = vertex.weightCount;
if (weightCount > maxWeightCount)
{
// Pour augmenter la qualité du skinning tout en ne gardant que X poids, on ne garde que les poids
// les plus importants, ayant le plus d'impact sur le sommet final
std::sort(tempWeights.begin(), tempWeights.end(), [] (const Weight& a, const Weight& b) -> bool {
return a.bias > b.bias;
});
// Sans oublier bien sûr de renormaliser les poids (que leur somme soit 1)
float weightSum = 0.f;
for (UInt32 j = 0; j < maxWeightCount; ++j)
weightSum += tempWeights[j].bias;
for (UInt32 j = 0; j < maxWeightCount; ++j)
tempWeights[j].bias /= weightSum;
weightCount = maxWeightCount;
}
if (posPtr)
*posPtr++ = finalPos;
if (uvPtr)
*uvPtr++ = Vector2f(parameters.texCoordOffset + vertex.uv * parameters.texCoordScale);
if (jointIndicesPtr)
{
Vector4i32& jointIndices = *jointIndicesPtr++;
for (UInt32 j = 0; j < maxWeightCount; ++j)
jointIndices[j] = (j < weightCount) ? tempWeights[j].jointIndex : 0;
}
if (jointWeightPtr)
{
Vector4f& jointWeights = *jointWeightPtr++;
for (UInt32 j = 0; j < maxWeightCount; ++j)
jointWeights[j] = (j < weightCount) ? tempWeights[j].bias : 0;
}
}
// Vertex colors (.md5mesh files have no vertex color)
if (auto colorPtr = vertexMapper.GetComponentPtr<Color>(VertexComponent::Color))
{
for (std::size_t j = 0; j < md5Mesh.vertices.size(); ++j)
*colorPtr++ = Color::White();
}
vertexMapper.Unmap();
// Material
ParameterList matData;
matData.SetParameter(MaterialData::BaseColorTexturePath, (baseDir / md5Mesh.shader).generic_u8string());
mesh->SetMaterialData(i, std::move(matData));
// Submesh
std::shared_ptr<SkeletalMesh> subMesh = std::make_shared<SkeletalMesh>(vertexBuffer, indexBuffer);
if (parameters.vertexDeclaration->HasComponentOfType<Vector3f>(VertexComponent::Normal))
{
if (parameters.vertexDeclaration->HasComponentOfType<Vector3f>(VertexComponent::Tangent))
subMesh->GenerateNormalsAndTangents();
else
subMesh->GenerateNormals();
}
subMesh->SetMaterialIndex(i);
mesh->AddSubMesh(subMesh);
// Animation
// Il est peut-être éventuellement possible que la probabilité que l'animation ait le même nom soit non-nulle.
std::filesystem::path path = stream.GetPath();
if (!path.empty())
{
path.replace_extension(".md5anim");
if (std::filesystem::exists(path))
mesh->SetAnimation(path);
}
}
return mesh;
}
else
{
std::shared_ptr<Mesh> mesh = std::make_shared<Mesh>();
if (!mesh->CreateStatic()) // Ne devrait jamais échouer
{
NazaraInternalError("Failed to create mesh");
return Err(ResourceLoadingError::Internal);
}
mesh->SetMaterialCount(meshCount);
for (UInt32 i = 0; i < meshCount; ++i)
{
const MD5MeshParser::Mesh& md5Mesh = meshes[i];
UInt32 indexCount = SafeCast<UInt32>(md5Mesh.triangles.size() * 3);
UInt32 vertexCount = SafeCast<UInt32>(md5Mesh.vertices.size());
// Index buffer
bool largeIndices = (vertexCount > std::numeric_limits<UInt16>::max());
std::shared_ptr<IndexBuffer> indexBuffer = std::make_shared<IndexBuffer>((largeIndices) ? IndexType::U32 : IndexType::U16, indexCount, parameters.indexBufferFlags, parameters.bufferFactory);
IndexMapper indexMapper(*indexBuffer);
IndexIterator index = indexMapper.begin();
for (const MD5MeshParser::Triangle& triangle : md5Mesh.triangles)
{
// On les respécifie dans le bon ordre
*index++ = triangle.x;
*index++ = triangle.z;
*index++ = triangle.y;
}
indexMapper.Unmap();
if (parameters.optimizeIndexBuffers)
indexBuffer->Optimize();
// Vertex buffer
std::shared_ptr<VertexBuffer> vertexBuffer = std::make_shared<VertexBuffer>(parameters.vertexDeclaration, vertexCount, parameters.vertexBufferFlags, parameters.bufferFactory);
VertexMapper vertexMapper(*vertexBuffer);
// Vertex positions
if (auto posPtr = vertexMapper.GetComponentPtr<Vector3f>(VertexComponent::Position))
{
for (const MD5MeshParser::Vertex& md5Vertex : md5Mesh.vertices)
{
// Id Tech MD5 skinning
Vector3f finalPos(Vector3f::Zero());
for (unsigned int j = 0; j < md5Vertex.weightCount; ++j)
{
const MD5MeshParser::Weight& weight = md5Mesh.weights[md5Vertex.startWeight + j];
const MD5MeshParser::Joint& joint = joints[weight.joint];
finalPos += (joint.bindPos + joint.bindOrient * weight.pos) * weight.bias;
}
// On retourne le modèle dans le bon sens
*posPtr++ = matrix * finalPos;
}
}
// Vertex UVs
if (auto uvPtr = vertexMapper.GetComponentPtr<Vector2f>(VertexComponent::TexCoord))
{
for (const MD5MeshParser::Vertex& md5Vertex : md5Mesh.vertices)
*uvPtr++ = parameters.texCoordOffset + md5Vertex.uv * parameters.texCoordScale;
}
// Vertex colors (.md5mesh files have no vertex color)
if (auto colorPtr = vertexMapper.GetComponentPtr<Color>(VertexComponent::Color))
{
for (std::size_t j = 0; j < md5Mesh.vertices.size(); ++j)
*colorPtr++ = Color::White();
}
vertexMapper.Unmap();
// Submesh
std::shared_ptr<StaticMesh> subMesh = std::make_shared<StaticMesh>(vertexBuffer, indexBuffer);
subMesh->GenerateAABB();
subMesh->SetMaterialIndex(i);
if (parameters.vertexDeclaration->HasComponentOfType<Vector3f>(VertexComponent::Normal))
{
if (parameters.vertexDeclaration->HasComponentOfType<Vector3f>(VertexComponent::Tangent))
subMesh->GenerateNormalsAndTangents();
else
subMesh->GenerateNormals();
}
mesh->AddSubMesh(subMesh);
// Material
ParameterList matData;
matData.SetParameter(MaterialData::BaseColorTexturePath, (baseDir / md5Mesh.shader).generic_u8string());
mesh->SetMaterialData(i, std::move(matData));
}
if (parameters.center)
mesh->Recenter();
return mesh;
}
}
}
namespace Loaders
{
MeshLoader::Entry GetMeshLoader_MD5Mesh()
{
MeshLoader::Entry loader;
loader.extensionSupport = IsMD5MeshSupported;
loader.streamLoader = LoadMD5Mesh;
loader.parameterFilter = [](const MeshParams& parameters)
{
if (auto result = parameters.custom.GetBooleanParameter("SkipBuiltinMD5MeshLoader"); result.GetValueOr(false))
return false;
return true;
};
return loader;
}
}
}