NazaraEngine/include/Nazara/Math/Ray.inl

447 lines
10 KiB
C++

// Copyright (C) 2015 Gawaboumga (https://github.com/Gawaboumga) - Jérôme Leclercq
// This file is part of the "Nazara Engine - Mathematics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/StringStream.hpp>
#include <limits>
#include <Nazara/Core/Debug.hpp>
#define F(a) static_cast<T>(a)
namespace Nz
{
template<typename T>
Ray<T>::Ray(T X, T Y, T Z, T DirectionX, T DirectionY, T DirectionZ)
{
Set(X, Y, Z, DirectionX, DirectionY, DirectionZ);
}
template<typename T>
Ray<T>::Ray(const T Origin[3], const T Direction[3])
{
Set(Origin, Direction);
}
template<typename T>
Ray<T>::Ray(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{
Set(planeOne, planeTwo);
}
template<typename T>
Ray<T>::Ray(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
template<typename U>
Ray<T>::Ray(const Ray<U>& ray)
{
Set(ray);
}
template<typename T>
template<typename U>
Ray<T>::Ray(const Vector3<U>& Origin, const Vector3<U>& Direction)
{
Set(Origin, Direction);
}
template<typename T>
T Ray<T>::ClosestPoint(const Vector3<T>& point) const
{
Vector3<T> delta = point - origin;
T vsq = direction.GetSquaredLength();
T proj = delta.DotProduct(direction);
return proj/vsq;
}
template<typename T>
Vector3<T> Ray<T>::GetPoint(T lambda) const
{
return origin + lambda * direction;
}
template<typename T>
bool Ray<T>::Intersect(const BoundingVolume<T>& volume, T* closestHit, T* furthestHit) const
{
switch (volume.extend)
{
case Extend_Finite:
{
if (Intersect(volume.aabb))
return Intersect(volume.obb, closestHit, furthestHit);
return false;
}
case Extend_Infinite:
{
if (closestHit)
*closestHit = F(0.0);
if (furthestHit)
*furthestHit = std::numeric_limits<T>::infinity();
return true;
}
case Extend_Null:
return false;
}
NazaraError("Invalid extend type (0x" + String::Number(volume.extend, 16) + ')');
return false;
}
template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, T* closestHit, T* furthestHit) const
{
// http://www.gamedev.net/topic/429443-obb-ray-and-obb-plane-intersection/
T tfirst = F(0.0);
T tlast = std::numeric_limits<T>::infinity();
Vector3<T> boxMin = box.GetMinimum();
Vector3<T> boxMax = box.GetMaximum();
for (unsigned int i = 0; i < 3; ++i)
{
T dir = direction[i];
T ori = origin[i];
T max = boxMax[i];
T min = boxMin[i];
if (NumberEquals(dir, F(0.0)))
{
if (ori < max && ori > min)
continue;
return false;
}
T tmin = (min - ori) / dir;
T tmax = (max - ori) / dir;
if (tmin > tmax)
std::swap(tmin, tmax);
if (tmax < tfirst || tmin > tlast)
return false;
tfirst = std::max(tfirst, tmin);
tlast = std::min(tlast, tmax);
}
if (closestHit)
*closestHit = tfirst;
if (furthestHit)
*furthestHit = tlast;
return true;
}
template<typename T>
bool Ray<T>::Intersect(const Box<T>& box, const Matrix4<T>& transform, T* closestHit, T* furthestHit) const
{
// http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/picking-with-custom-ray-obb-function/
// Intersection method from Real-Time Rendering and Essential Mathematics for Games
T tMin = F(0.0);
T tMax = std::numeric_limits<T>::infinity();
Vector3<T> boxMin = box.GetMinimum();
Vector3<T> boxMax = box.GetMaximum();
Vector3<T> delta = transform.GetTranslation() - origin;
// Test intersection with the 2 planes perpendicular to the OBB's X axis
for (unsigned int i = 0; i < 3; ++i)
{
Vector3<T> axis(transform(0, i), transform(1, i), transform(2, i));
T e = axis.DotProduct(delta);
T f = direction.DotProduct(axis);
if (!NumberEquals(f, F(0.0)))
{
T t1 = (e + boxMin[i]) / f; // Intersection with the "left" plane
T t2 = (e + boxMax[i]) / f; // Intersection with the "right" plane
// t1 and t2 now contain distances betwen ray origin and ray-plane intersections
// We want t1 to represent the nearest intersection,
// so if it's not the case, invert t1 and t2
if (t1 > t2)
std::swap(t1, t2);
// tMax is the nearest "far" intersection (amongst the X,Y and Z planes pairs)
if (t2 < tMax)
tMax = t2;
// tMin is the farthest "near" intersection (amongst the X,Y and Z planes pairs)
if (t1 > tMin)
tMin = t1;
// And here's the trick :
// If "far" is closer than "near", then there is NO intersection.
if (tMax < tMin)
return false;
}
else
// Rare case : the ray is almost parallel to the planes, so they don't have any "intersection"
if (-e + boxMin[i] > F(0.0) || -e + boxMax[i] < F(0.0))
return false;
}
if (closestHit)
*closestHit = tMin;
if (furthestHit)
*furthestHit = tMax;
return true;
}
template<typename T>
bool Ray<T>::Intersect(const OrientedBox<T>& orientedBox, T* closestHit, T* furthestHit) const
{
Vector3<T> corner = orientedBox.GetCorner(BoxCorner_FarLeftBottom);
Vector3<T> oppositeCorner = orientedBox.GetCorner(BoxCorner_NearRightTop);
Vector3<T> width = (orientedBox.GetCorner(BoxCorner_NearLeftBottom) - corner);
Vector3<T> height = (orientedBox.GetCorner(BoxCorner_FarLeftTop) - corner);
Vector3<T> depth = (orientedBox.GetCorner(BoxCorner_FarRightBottom) - corner);
// Construction de la matrice de transformation de l'OBB
Matrix4<T> matrix(width.x, height.x, depth.x, corner.x,
width.y, height.y, depth.y, corner.y,
width.z, height.z, depth.z, corner.z,
F(0.0), F(0.0), F(0.0), F(1.0));
matrix.InverseAffine();
corner = matrix.Transform(corner);
oppositeCorner = matrix.Transform(oppositeCorner);
Box<T> tmpBox(corner, oppositeCorner);
Ray<T> tmpRay(matrix.Transform(origin), matrix.Transform(direction));
return tmpRay.Intersect(tmpBox, closestHit, furthestHit);
}
template<typename T>
bool Ray<T>::Intersect(const Plane<T>& plane, T* hit) const
{
T divisor = plane.normal.DotProduct(direction);
if (NumberEquals(divisor, F(0.0)))
return false; // perpendicular
T lambda = -(plane.normal.DotProduct(origin) - plane.distance) / divisor; // The plane is ax + by + cz = d
if (lambda < F(0.0))
return false; // The plane is 'behind' the ray.
if (hit)
*hit = lambda;
return true;
}
template<typename T>
bool Ray<T>::Intersect(const Sphere<T>& sphere, T* closestHit, T* furthestHit) const
{
Vector3<T> sphereRay = sphere.GetPosition() - origin;
T length = sphereRay.DotProduct(direction);
if (length < F(0.0))
return false; // ray is perpendicular to the vector origin - center
T squaredDistance = sphereRay.GetSquaredLength() - length*length;
T squaredRadius = sphere.radius*sphere.radius;
if (squaredDistance > squaredRadius)
return false; // if the ray is further than the radius
// Calcul des points d'intersection si besoin
if (closestHit || furthestHit)
{
T deltaLambda = std::sqrt(squaredRadius - squaredDistance);
if (closestHit)
*closestHit = length - deltaLambda;
if (furthestHit)
*furthestHit = length + deltaLambda;
}
return true;
}
template<typename T>
Ray<T>& Ray<T>::MakeAxisX()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitX());
}
template<typename T>
Ray<T>& Ray<T>::MakeAxisY()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitY());
}
template<typename T>
Ray<T>& Ray<T>::MakeAxisZ()
{
return Set(Vector3<T>::Zero(), Vector3<T>::UnitZ());
}
template<typename T>
Ray<T>& Ray<T>::Set(T X, T Y, T Z, T directionX, T directionY, T directionZ)
{
direction.Set(directionX, directionY, directionZ);
origin.Set(X, Y, Z);
return *this;
}
template<typename T>
Ray<T>& Ray<T>::Set(const T Origin[3], const T Direction[3])
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
template<typename T>
Ray<T>& Ray<T>::Set(const Plane<T>& planeOne, const Plane<T>& planeTwo)
{
T termOne = planeOne.normal.GetLength();
T termTwo = planeOne.normal.DotProduct(planeTwo.normal);
T termFour = planeTwo.normal.GetLength();
T det = termOne * termFour - termTwo * termTwo;
#if NAZARA_MATH_SAFE
if (NumberEquals(det, F(0.0)))
{
String error("Planes are parallel.");
NazaraError(error);
throw std::domain_error(error);
}
#endif
T invdet = F(1.0) / det;
T fc0 = (termFour * -planeOne.distance + termTwo * planeTwo.distance) * invdet;
T fc1 = (termOne * -planeTwo.distance + termTwo * planeOne.distance) * invdet;
direction = planeOne.normal.CrossProduct(planeTwo.normal);
origin = planeOne.normal * fc0 + planeTwo.normal * fc1;
return *this;
}
template<typename T>
Ray<T>& Ray<T>::Set(const Ray& ray)
{
std::memcpy(this, &ray, sizeof(Ray));
return *this;
}
template<typename T>
Ray<T>& Ray<T>::Set(const Vector3<T>& Origin, const Vector3<T>& Direction)
{
direction = Direction;
origin = Origin;
return *this;
}
template<typename T>
template<typename U>
Ray<T>& Ray<T>::Set(const Ray<U>& ray)
{
direction.Set(ray.direction);
origin.Set(ray.origin);
return *this;
}
template<typename T>
template<typename U>
Ray<T>& Ray<T>::Set(const Vector3<U>& Origin, const Vector3<U>& Direction)
{
direction.Set(Direction);
origin.Set(Origin);
return *this;
}
template<typename T>
String Ray<T>::ToString() const
{
StringStream ss;
return ss << "Ray(origin: " << origin.ToString() << ", direction: " << direction.ToString() << ")";
}
template<typename T>
Vector3<T> Ray<T>::operator*(T lambda) const
{
return GetPoint(lambda);
}
template<typename T>
bool Ray<T>::operator==(const Ray& ray) const
{
return direction == ray.direction && origin == ray.origin;
}
template<typename T>
bool Ray<T>::operator!=(const Ray& ray) const
{
return !operator==(ray);
}
template<typename T>
Ray<T> Ray<T>::AxisX()
{
Ray axis;
axis.MakeAxisX();
return axis;
}
template<typename T>
Ray<T> Ray<T>::AxisY()
{
Ray axis;
axis.MakeAxisY();
return axis;
}
template<typename T>
Ray<T> Ray<T>::AxisZ()
{
Ray axis;
axis.MakeAxisZ();
return axis;
}
template<typename T>
Ray<T> Ray<T>::Lerp(const Ray& from, const Ray& to, T interpolation)
{
return Ray<T>(from.origin.Lerp(to.origin, interpolation), from.direction.Lerp(to.direction, interpolation));
}
}
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Ray<T>& ray)
{
return out << ray.ToString();
}
#undef F
#include <Nazara/Core/DebugOff.hpp>