NazaraEngine/src/Nazara/Graphics/DeferredRenderTechnique.cpp

739 lines
19 KiB
C++

// Copyright (C) 2015 Jérôme Leclercq
// This file is part of the "Nazara Engine - Graphics module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#ifndef NAZARA_RENDERER_OPENGL
#define NAZARA_RENDERER_OPENGL // Nécessaire pour inclure les headers OpenGL
#endif
#include <Nazara/Graphics/DeferredRenderTechnique.hpp>
#include <Nazara/Core/ErrorFlags.hpp>
#include <Nazara/Graphics/AbstractBackground.hpp>
#include <Nazara/Graphics/AbstractViewer.hpp>
#include <Nazara/Graphics/DeferredBloomPass.hpp>
#include <Nazara/Graphics/DeferredDOFPass.hpp>
#include <Nazara/Graphics/DeferredFinalPass.hpp>
#include <Nazara/Graphics/DeferredFogPass.hpp>
#include <Nazara/Graphics/DeferredForwardPass.hpp>
#include <Nazara/Graphics/DeferredFXAAPass.hpp>
#include <Nazara/Graphics/DeferredGeometryPass.hpp>
#include <Nazara/Graphics/DeferredPhongLightingPass.hpp>
#include <Nazara/Graphics/Drawable.hpp>
#include <Nazara/Graphics/Light.hpp>
#include <Nazara/Graphics/Material.hpp>
#include <Nazara/Graphics/Sprite.hpp>
#include <Nazara/Renderer/Config.hpp>
#include <Nazara/Renderer/OpenGL.hpp>
#include <Nazara/Renderer/Renderer.hpp>
#include <Nazara/Renderer/Shader.hpp>
#include <Nazara/Renderer/ShaderStage.hpp>
#include <limits>
#include <memory>
#include <random>
#include <Nazara/Graphics/Debug.hpp>
namespace Nz
{
namespace
{
const UInt8 r_fragmentSource_BloomBright[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/BloomBright.frag.h>
};
const UInt8 r_fragmentSource_BloomFinal[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/BloomFinal.frag.h>
};
const UInt8 r_fragmentSource_DirectionalLight[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/DirectionalLight.frag.h>
};
const UInt8 r_fragmentSource_FXAA[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/FXAA.frag.h>
};
const UInt8 r_fragmentSource_GBufferClear[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/GBufferClear.frag.h>
};
const UInt8 r_fragmentSource_GaussianBlur[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/GaussianBlur.frag.h>
};
const UInt8 r_fragmentSource_PointSpotLight[] = {
#include <Nazara/Graphics/Resources/DeferredShading/Shaders/PointSpotLight.frag.h>
};
unsigned int RenderPassPriority[] =
{
6, // RenderPassType_AA
4, // RenderPassType_Bloom
7, // RenderPassType_DOF
0xFF, // RenderPassType_Final
5, // RenderPassType_Fog
2, // RenderPassType_Forward
1, // RenderPassType_Lighting
0, // RenderPassType_Geometry
3, // RenderPassType_SSAO
};
static_assert(sizeof(RenderPassPriority) / sizeof(unsigned int) == RenderPassType_Max + 1, "Render pass priority array is incomplete");
/*!
* \brief Registers the deferred shader
* \return Reference to the newly created shader
*
* \param name Name of the shader
* \param fragmentSource Raw data to fragment shader
* \param fragmentSourceLength Size of the fragment source
* \param vertexStage Stage of the shader
* \param err Pointer to string to contain error message
*/
inline ShaderRef RegisterDeferredShader(const String& name, const UInt8* fragmentSource, unsigned int fragmentSourceLength, const ShaderStage& vertexStage, String* err)
{
ErrorFlags errFlags(ErrorFlag_Silent | ErrorFlag_ThrowExceptionDisabled);
ShaderRef shader = Shader::New();
if (!shader->Create())
{
err->Set("Failed to create shader: " + Error::GetLastError());
return nullptr;
}
if (!shader->AttachStageFromSource(ShaderStageType_Fragment, reinterpret_cast<const char*>(fragmentSource), fragmentSourceLength))
{
err->Set("Failed to attach fragment stage: " + Error::GetLastError());
return nullptr;
}
shader->AttachStage(ShaderStageType_Vertex, vertexStage);
if (!shader->Link())
{
err->Set("Failed to link shader: " + Error::GetLastError());
return nullptr;
}
ShaderLibrary::Register(name, shader);
return shader;
}
}
/*!
* \ingroup graphics
* \class Nz::DeferredRenderTechnique
* \brief Graphics class that represents the technique used in deferred rendering
*/
/*!
* \brief Constructs a DeferredRenderTechnique object by default
*
* \remark Produces a NazaraError if one pass could not be created
*/
DeferredRenderTechnique::DeferredRenderTechnique() :
m_renderQueue(static_cast<ForwardRenderQueue*>(m_forwardTechnique.GetRenderQueue())),
m_GBufferSize(0U)
{
m_depthStencilBuffer = RenderBuffer::New();
for (unsigned int i = 0; i < 2; ++i)
m_workTextures[i] = Texture::New();
for (unsigned int i = 0; i < 3; ++i)
m_GBuffer[i] = Texture::New();
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
ResetPass(RenderPassType_Final, 0);
ResetPass(RenderPassType_Geometry, 0);
ResetPass(RenderPassType_Lighting, 0);
}
catch (const std::exception& e)
{
ErrorFlags errFlags(ErrorFlag_ThrowExceptionDisabled);
NazaraError("Failed to add geometry and/or phong lighting pass: " + String(e.what()));
throw;
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
ResetPass(RenderPassType_AA, 0);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add FXAA pass: " + String(e.what()));
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
ResetPass(RenderPassType_Bloom, 0);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add bloom pass: " + String(e.what()));
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
DeferredRenderPass* dofPass = ResetPass(RenderPassType_DOF, 0);
dofPass->Enable(false);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add DOF pass: " + String(e.what()));
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
DeferredRenderPass* fogPass = ResetPass(RenderPassType_Fog, 0);
fogPass->Enable(false);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add fog pass: " + String(e.what()));
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
ResetPass(RenderPassType_Forward, 0);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add forward pass: " + String(e.what()));
}
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
ResetPass(RenderPassType_SSAO, 0);
}
catch (const std::exception& e)
{
NazaraWarning("Failed to add SSAO pass: " + String(e.what()));
}
}
DeferredRenderTechnique::~DeferredRenderTechnique() = default;
/*!
* \brief Clears the data
*
* \param sceneData Data of the scene
*/
void DeferredRenderTechnique::Clear(const SceneData& sceneData) const
{
NazaraUnused(sceneData);
}
/*!
* \brief Draws the data of the scene
* \return true If successful
*
* \param sceneData Data of the scene
*
* \remark Produces a NazaraAssert if viewer of the scene is invalid
* \remark Produces a NazaraError if updating viewport dimensions failed
*/
bool DeferredRenderTechnique::Draw(const SceneData& sceneData) const
{
NazaraAssert(sceneData.viewer, "Invalid viewer");
Recti viewerViewport = sceneData.viewer->GetViewport();
Vector2ui viewportDimensions(viewerViewport.width, viewerViewport.height);
if (viewportDimensions != m_GBufferSize)
{
if (!Resize(viewportDimensions))
{
NazaraError("Failed to update RTT");
return false;
}
}
unsigned int sceneTexture = 0;
unsigned int workTexture = 1;
for (auto& passIt : m_passes)
{
for (auto& passIt2 : passIt.second)
{
const DeferredRenderPass* pass = passIt2.second.get();
if (pass->IsEnabled())
{
if (pass->Process(sceneData, workTexture, sceneTexture))
std::swap(workTexture, sceneTexture);
}
}
}
return true;
}
/*!
* \brief Enables a pass
*
* \param renderPass Enumeration for the pass
* \param position Position of the pass
* \param enable Should the pass be enabled
*/
void DeferredRenderTechnique::EnablePass(RenderPassType renderPass, int position, bool enable)
{
auto it = m_passes.find(renderPass);
if (it != m_passes.end())
{
auto it2 = it->second.find(position);
if (it2 != it->second.end())
it2->second->Enable(enable);
}
}
/*!
* \brief Gets the stencil buffer
* \return Pointer to the rendering buffer
*/
RenderBuffer* DeferredRenderTechnique::GetDepthStencilBuffer() const
{
return m_depthStencilBuffer;
}
/*!
* \brief Gets the G-buffer
* \return Pointer to the ith texture
*
* \param i Index of the G-buffer
*
* \remark Produces a NazaraError with NAZARA_GRAPHICS_SAFE defined if index is invalid
*/
Texture* DeferredRenderTechnique::GetGBuffer(unsigned int i) const
{
#if NAZARA_GRAPHICS_SAFE
if (i >= 3)
{
NazaraError("GBuffer texture index out of range (" + String::Number(i) + " >= 3)");
return nullptr;
}
#endif
return m_GBuffer[i];
}
/*!
* \brief Gets the rendering texture of the G-buffer
* \return Pointer to the rendering buffer
*/
RenderTexture* DeferredRenderTechnique::GetGBufferRTT() const
{
return &m_GBufferRTT;
}
/*!
* \brief Gets the forward technique
* \return Constant pointer to the forward technique
*/
const ForwardRenderTechnique* DeferredRenderTechnique::GetForwardTechnique() const
{
return &m_forwardTechnique;
}
/*!
* \brief Gets the pass
* \return Pointer to the deferred render pass
*
* \param renderPass Enumeration for the pass
* \param position Position of the pass
*/
DeferredRenderPass* DeferredRenderTechnique::GetPass(RenderPassType renderPass, int position)
{
auto it = m_passes.find(renderPass);
if (it != m_passes.end())
{
auto it2 = it->second.find(position);
if (it2 != it->second.end())
return it2->second.get();
}
return nullptr;
}
/*!
* \brief Gets the render queue
* \return Pointer to the render queue
*/
AbstractRenderQueue* DeferredRenderTechnique::GetRenderQueue()
{
return &m_renderQueue;
}
/*!
* \brief Gets the type of the current technique
* \return Type of the render technique
*/
RenderTechniqueType DeferredRenderTechnique::GetType() const
{
return RenderTechniqueType_DeferredShading;
}
/*!
* \brief Gets the render texture used to work
* \return Pointer to the rendering texture
*/
RenderTexture* DeferredRenderTechnique::GetWorkRTT() const
{
return &m_workRTT;
}
/*!
* \brief Gets the ith texture to work
* \return Pointer to the texture
*
* \param i Index of the texture used to work
*
* \remark Produces a NazaraError with NAZARA_GRAPHICS_SAFE defined if index is invalid
*/
Texture* DeferredRenderTechnique::GetWorkTexture(unsigned int i) const
{
#if NAZARA_GRAPHICS_SAFE
if (i >= 2)
{
NazaraError("Work texture index out of range (" + String::Number(i) + " >= 2)");
return nullptr;
}
#endif
return m_workTextures[i];
}
/*!
* \brief Checks whether the pass is enable
* \return true If it is the case
*
* \param renderPass Enumeration for the pass
* \param position Position of the pass
*/
bool DeferredRenderTechnique::IsPassEnabled(RenderPassType renderPass, int position)
{
auto it = m_passes.find(renderPass);
if (it != m_passes.end())
{
auto it2 = it->second.find(position);
if (it2 != it->second.end())
return it2->second->IsEnabled();
}
return false;
}
/*!
* \brief Resets the pass
* \return Pointer to the new deferred render pass
*
* \param renderPass Enumeration for the pass
* \param position Position of the pass
*/
DeferredRenderPass* DeferredRenderTechnique::ResetPass(RenderPassType renderPass, int position)
{
std::unique_ptr<DeferredRenderPass> smartPtr; // We avoid to leak in case of exception
switch (renderPass)
{
case RenderPassType_AA:
smartPtr.reset(new DeferredFXAAPass);
break;
case RenderPassType_Bloom:
smartPtr.reset(new DeferredBloomPass);
break;
case RenderPassType_DOF:
smartPtr.reset(new DeferredDOFPass);
break;
case RenderPassType_Final:
smartPtr.reset(new DeferredFinalPass);
break;
case RenderPassType_Fog:
smartPtr.reset(new DeferredFogPass);
break;
case RenderPassType_Forward:
smartPtr.reset(new DeferredForwardPass);
break;
case RenderPassType_Geometry:
smartPtr.reset(new DeferredGeometryPass);
break;
case RenderPassType_Lighting:
smartPtr.reset(new DeferredPhongLightingPass);
break;
case RenderPassType_SSAO:
//smartPtr.reset(new DeferredSSAOPass);
break;
}
DeferredRenderPass* oldPass = GetPass(renderPass, position);
if (oldPass && !oldPass->IsEnabled())
smartPtr->Enable(false);
SetPass(renderPass, position, smartPtr.get());
return smartPtr.release();
}
/*!
* \brief Sets the pass
*
* \param relativeTo Enumeration for the pass
* \param position Position of the pass
* \param pass Render pass to set
*/
void DeferredRenderTechnique::SetPass(RenderPassType relativeTo, int position, DeferredRenderPass* pass)
{
if (pass)
{
pass->Initialize(this);
if (m_GBufferSize != Vector2ui(0U))
pass->Resize(m_GBufferSize);
m_passes[relativeTo][position].reset(pass);
}
else
m_passes[relativeTo].erase(position);
}
/*!
* \brief Checks whether the technique is supported
* \return true if it is the case
*/
bool DeferredRenderTechnique::IsSupported()
{
// Since OpenGL 3.3 is the minimal version, the Renderer supports what it needs, but we are never sure...
return Renderer::GetMaxColorAttachments() >= 4 && Renderer::GetMaxRenderTargets() >= 4;
}
/*!
* \brief Resizes the texture sizes used for the render technique
* \return true If successful
*
* \param dimensions Dimensions for the render technique
*
* \param Produces a NazaraError if one pass could not be resized
*/
bool DeferredRenderTechnique::Resize(const Vector2ui& dimensions) const
{
try
{
ErrorFlags errFlags(ErrorFlag_ThrowException);
for (auto& passIt : m_passes)
for (auto& passIt2 : passIt.second)
passIt2.second->Resize(dimensions);
m_GBufferSize = dimensions;
return true;
}
catch (const std::exception& e)
{
NazaraError("Failed to create work RTT/G-Buffer: " + String(e.what()));
return false;
}
}
/*!
* \brief Initializes the deferred render technique
* \return true If successful
*
* \remark Produces a NazaraError if one shader creation failed
*/
bool DeferredRenderTechnique::Initialize()
{
const char vertexSource_Basic[] =
"#version 140\n"
"in vec3 VertexPosition;\n"
"uniform mat4 WorldViewProjMatrix;\n"
"void main()\n"
"{\n"
"gl_Position = WorldViewProjMatrix * vec4(VertexPosition, 1.0);\n"
"}\n";
const char vertexSource_PostProcess[] =
"#version 140\n"
"in vec3 VertexPosition;\n"
"void main()\n"
"{\n"
"gl_Position = vec4(VertexPosition, 1.0);"
"}\n";
ShaderStage basicVertexStage(ShaderStageType_Vertex);
if (!basicVertexStage.IsValid())
{
NazaraError("Failed to create basic vertex shader");
return false;
}
basicVertexStage.SetSource(vertexSource_Basic, sizeof(vertexSource_Basic));
if (!basicVertexStage.Compile())
{
NazaraError("Failed to compile basic vertex shader");
return false;
}
ShaderStage ppVertexStage(ShaderStageType_Vertex);
if (!ppVertexStage.IsValid())
{
NazaraError("Failed to create vertex shader");
return false;
}
ppVertexStage.SetSource(vertexSource_PostProcess, sizeof(vertexSource_PostProcess));
if (!ppVertexStage.Compile())
{
NazaraError("Failed to compile vertex shader");
return false;
}
String error;
Shader* shader;
// Shaders critiques (Nécessaires pour le Deferred Shading minimal)
shader = RegisterDeferredShader("DeferredGBufferClear", r_fragmentSource_GBufferClear, sizeof(r_fragmentSource_GBufferClear), ppVertexStage, &error);
if (!shader)
{
NazaraError("Failed to register critical shader: " + error);
return false;
}
shader = RegisterDeferredShader("DeferredDirectionnalLight", r_fragmentSource_DirectionalLight, sizeof(r_fragmentSource_DirectionalLight), ppVertexStage, &error);
if (!shader)
{
NazaraError("Failed to register critical shader: " + error);
return false;
}
shader->SendInteger(shader->GetUniformLocation("GBuffer0"), 0);
shader->SendInteger(shader->GetUniformLocation("GBuffer1"), 1);
shader->SendInteger(shader->GetUniformLocation("GBuffer2"), 2);
shader = RegisterDeferredShader("DeferredPointSpotLight", r_fragmentSource_PointSpotLight, sizeof(r_fragmentSource_PointSpotLight), basicVertexStage, &error);
if (!shader)
{
NazaraError("Failed to register critical shader: " + error);
return false;
}
shader->SendInteger(shader->GetUniformLocation("GBuffer0"), 0);
shader->SendInteger(shader->GetUniformLocation("GBuffer1"), 1);
shader->SendInteger(shader->GetUniformLocation("GBuffer2"), 2);
// Shaders optionnels (S'ils ne sont pas présents, le rendu minimal sera quand même assuré)
shader = RegisterDeferredShader("DeferredBloomBright", r_fragmentSource_BloomBright, sizeof(r_fragmentSource_BloomBright), ppVertexStage, &error);
if (shader)
shader->SendInteger(shader->GetUniformLocation("ColorTexture"), 0);
else
{
NazaraWarning("Failed to register bloom (bright pass) shader, certain features will not work: " + error);
}
shader = RegisterDeferredShader("DeferredBloomFinal", r_fragmentSource_BloomFinal, sizeof(r_fragmentSource_BloomFinal), ppVertexStage, &error);
if (shader)
{
shader->SendInteger(shader->GetUniformLocation("ColorTexture"), 0);
shader->SendInteger(shader->GetUniformLocation("BloomTexture"), 1);
}
else
{
NazaraWarning("Failed to register bloom (final pass) shader, certain features will not work: " + error);
}
shader = RegisterDeferredShader("DeferredFXAA", r_fragmentSource_FXAA, sizeof(r_fragmentSource_FXAA), ppVertexStage, &error);
if (shader)
shader->SendInteger(shader->GetUniformLocation("ColorTexture"), 0);
else
{
NazaraWarning("Failed to register FXAA shader, certain features will not work: " + error);
}
shader = RegisterDeferredShader("DeferredGaussianBlur", r_fragmentSource_GaussianBlur, sizeof(r_fragmentSource_GaussianBlur), ppVertexStage, &error);
if (shader)
shader->SendInteger(shader->GetUniformLocation("ColorTexture"), 0);
else
{
NazaraWarning("Failed to register gaussian blur shader, certain features will not work: " + error);
}
return true;
}
/*!
* \brief Uninitializes the deferred render technique
*/
void DeferredRenderTechnique::Uninitialize()
{
ShaderLibrary::Unregister("DeferredGBufferClear");
ShaderLibrary::Unregister("DeferredDirectionnalLight");
ShaderLibrary::Unregister("DeferredPointSpotLight");
ShaderLibrary::Unregister("DeferredBloomBright");
ShaderLibrary::Unregister("DeferredBloomFinal");
ShaderLibrary::Unregister("DeferredFXAA");
ShaderLibrary::Unregister("DeferredGaussianBlur");
}
/*!
* \brief Functor to compare two render pass
* \return true If first render pass is "smaller" than the second one
*
* \param pass1 First render pass to compare
* \param pass2 Second render pass to compare
*/
bool DeferredRenderTechnique::RenderPassComparator::operator()(RenderPassType pass1, RenderPassType pass2) const
{
return RenderPassPriority[pass1] < RenderPassPriority[pass2];
}
}