618 lines
11 KiB
C++
618 lines
11 KiB
C++
// Copyright (C) 2012 Rémi Bèges - Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Mathematics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/StringStream.hpp>
|
|
#include <Nazara/Math/Basic.hpp>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <stdexcept>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
#define F(a) static_cast<T>(a)
|
|
|
|
template<typename T>
|
|
NzVector3<T>::NzVector3(T X, T Y, T Z)
|
|
{
|
|
Set(X, Y, Z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::NzVector3(T scale)
|
|
{
|
|
Set(scale);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::NzVector3(const T vec[3])
|
|
{
|
|
Set(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::NzVector3(const NzVector2<T>& vec, T Z)
|
|
{
|
|
Set(vec, Z);
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzVector3<T>::NzVector3(const NzVector3<U>& vec)
|
|
{
|
|
Set(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::AbsDotProduct(const NzVector3& vec) const
|
|
{
|
|
return std::fabs(x * vec.x) + std::fabs(y * vec.y) + std::fabs(z * vec.z);
|
|
}
|
|
|
|
template<>
|
|
inline int NzVector3<int>::AbsDotProduct(const NzVector3<int>& vec) const
|
|
{
|
|
return std::labs(x * vec.x) + std::labs(y * vec.y) + std::labs(z * vec.z);
|
|
}
|
|
|
|
template<>
|
|
inline unsigned int NzVector3<unsigned int>::AbsDotProduct(const NzVector3<unsigned int>& vec) const
|
|
{
|
|
return std::labs(x * vec.x) + std::labs(y * vec.y) + std::labs(z * vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::CrossProduct(const NzVector3& vec) const
|
|
{
|
|
return NzVector3(y * vec.z - z * vec.y, z * vec.x - x * vec.z, x * vec.y - y * vec.x);
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::Distance(const NzVector3& vec) const
|
|
{
|
|
return std::sqrt(SquaredDistance(vec));
|
|
}
|
|
|
|
template<typename T>
|
|
float NzVector3<T>::Distancef(const NzVector3& vec) const
|
|
{
|
|
return std::sqrt(static_cast<float>(SquaredDistance()));
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::DotProduct(const NzVector3& vec) const
|
|
{
|
|
return x*vec.x + y*vec.y + z*vec.z;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::GetNormal() const
|
|
{
|
|
NzVector3 vec(*this);
|
|
vec.Normalize();
|
|
|
|
return vec;
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::Length() const
|
|
{
|
|
return std::sqrt(SquaredLength());
|
|
}
|
|
|
|
template<typename T>
|
|
float NzVector3<T>::Lengthf() const
|
|
{
|
|
return std::sqrt(static_cast<float>(SquaredLength()));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeForward()
|
|
{
|
|
return Set(F(0.0), F(0.0), F(-1.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeLeft()
|
|
{
|
|
return Set(F(-1.0), F(0.0), F(0.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeUnitX()
|
|
{
|
|
return Set(F(1.0), F(0.0), F(0.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeUnitY()
|
|
{
|
|
return Set(F(0.0), F(1.0), F(0.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeUnitZ()
|
|
{
|
|
return Set(F(0.0), F(0.0), F(1.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeUp()
|
|
{
|
|
return Set(F(0.0), F(1.0), F(0.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::MakeZero()
|
|
{
|
|
return Set(F(0.0), F(0.0), F(0.0));
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Maximize(const NzVector3& vec)
|
|
{
|
|
if (vec.x > x)
|
|
x = vec.x;
|
|
|
|
if (vec.y > y)
|
|
y = vec.y;
|
|
|
|
if (vec.z > z)
|
|
z = vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Minimize(const NzVector3& vec)
|
|
{
|
|
if (vec.x < x)
|
|
x = vec.x;
|
|
|
|
if (vec.y < y)
|
|
y = vec.y;
|
|
|
|
if (vec.z < z)
|
|
z = vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Normalize(T* length)
|
|
{
|
|
T norm = std::sqrt(SquaredLength());
|
|
T invNorm = F(1.0) / norm;
|
|
|
|
x *= invNorm;
|
|
y *= invNorm;
|
|
z *= invNorm;
|
|
|
|
if (length)
|
|
*length = norm;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Set(T X, T Y, T Z)
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
z = Z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Set(T scale)
|
|
{
|
|
x = scale;
|
|
y = scale;
|
|
z = scale;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Set(const T vec[3])
|
|
{
|
|
std::memcpy(&x, vec, 3*sizeof(T));
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::Set(const NzVector2<T>& vec, T Z)
|
|
{
|
|
x = vec.x;
|
|
y = vec.y;
|
|
z = Z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
NzVector3<T>& NzVector3<T>::Set(const NzVector3<U>& vec)
|
|
{
|
|
x = F(vec.x);
|
|
y = F(vec.y);
|
|
z = F(vec.z);
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::SquaredDistance(const NzVector3& vec) const
|
|
{
|
|
return operator-(vec).SquaredLength();
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::SquaredLength() const
|
|
{
|
|
return x*x + y*y + z*z;
|
|
}
|
|
|
|
template<typename T>
|
|
NzString NzVector3<T>::ToString() const
|
|
{
|
|
NzStringStream ss;
|
|
|
|
return ss << "Vector3(" << x << ", " << y << ", " << z <<')';
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::operator NzString() const
|
|
{
|
|
return ToString();
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::operator T*()
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>::operator const T*() const
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
template<typename T>
|
|
T& NzVector3<T>::operator[](unsigned int i)
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (i >= 3)
|
|
{
|
|
NzStringStream ss;
|
|
ss << "Index out of range: (" << i << " >= 3)";
|
|
|
|
NazaraError(ss);
|
|
throw std::out_of_range(ss.ToString());
|
|
}
|
|
#endif
|
|
|
|
return *(&x+i);
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::operator[](unsigned int i) const
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (i >= 3)
|
|
{
|
|
NzStringStream ss;
|
|
ss << "Index out of range: (" << i << " >= 3)";
|
|
|
|
NazaraError(ss);
|
|
throw std::out_of_range(ss.ToString());
|
|
}
|
|
#endif
|
|
|
|
return *(&x+i);
|
|
}
|
|
|
|
template<typename T>
|
|
const NzVector3<T>& NzVector3<T>::operator+() const
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator-() const
|
|
{
|
|
return NzVector3(-x, -y, -z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator+(const NzVector3& vec) const
|
|
{
|
|
return NzVector3(x + vec.x, y + vec.y, z + vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator-(const NzVector3& vec) const
|
|
{
|
|
return NzVector3(x - vec.x, y - vec.y, z - vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator*(const NzVector3& vec) const
|
|
{
|
|
return NzVector3(x * vec.x, y * vec.y, z * vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator*(T scale) const
|
|
{
|
|
return NzVector3(x * scale, y * scale, z * scale);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator/(const NzVector3& vec) const
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
|
{
|
|
NzString error("Division by zero");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
return NzVector3(x / vec.x, y / vec.y, z / vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::operator/(T scale) const
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(scale, F(0.0)))
|
|
{
|
|
NzString error("Division by zero");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
return NzVector3(x / scale, y / scale, z / scale);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator+=(const NzVector3& vec)
|
|
{
|
|
x += vec.x;
|
|
y += vec.y;
|
|
z += vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator-=(const NzVector3& vec)
|
|
{
|
|
x -= vec.x;
|
|
y -= vec.y;
|
|
z -= vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator*=(const NzVector3& vec)
|
|
{
|
|
x *= vec.x;
|
|
y *= vec.y;
|
|
z *= vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator*=(T scale)
|
|
{
|
|
x *= scale;
|
|
y *= scale;
|
|
z *= scale;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator/=(const NzVector3& vec)
|
|
{
|
|
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
|
{
|
|
NzString error("Division by zero");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
|
|
x /= vec.x;
|
|
y /= vec.y;
|
|
z /= vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T>& NzVector3<T>::operator/=(T scale)
|
|
{
|
|
if (NzNumberEquals(scale, F(0.0)))
|
|
{
|
|
NzString error("Division by zero");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
|
|
x /= scale;
|
|
y /= scale;
|
|
z /= scale;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator==(const NzVector3& vec) const
|
|
{
|
|
return NzNumberEquals(x, vec.x) &&
|
|
NzNumberEquals(y, vec.y) &&
|
|
NzNumberEquals(z, vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator!=(const NzVector3& vec) const
|
|
{
|
|
return !operator==(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator<(const NzVector3& vec) const
|
|
{
|
|
return x < vec.x && y < vec.y && z < vec.z;
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator<=(const NzVector3& vec) const
|
|
{
|
|
return operator<(vec) || operator==(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator>(const NzVector3& vec) const
|
|
{
|
|
return !operator<=(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
bool NzVector3<T>::operator>=(const NzVector3& vec) const
|
|
{
|
|
return !operator<(vec);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::CrossProduct(const NzVector3& vec1, const NzVector3& vec2)
|
|
{
|
|
return vec1.CrossProduct(vec2);
|
|
}
|
|
|
|
template<typename T>
|
|
T NzVector3<T>::DotProduct(const NzVector3& vec1, const NzVector3& vec2)
|
|
{
|
|
return vec1.DotProduct(vec2);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Forward()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeForward();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Left()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeLeft();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Lerp(const NzVector3& from, const NzVector3& to, T interpolation)
|
|
{
|
|
return NzLerp(from, to, interpolation);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Normalize(const NzVector3& vec)
|
|
{
|
|
return vec.GetNormal();
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::UnitX()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeUnitX();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::UnitY()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeUnitY();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::UnitZ()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeUnitZ();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Up()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeUp();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> NzVector3<T>::Zero()
|
|
{
|
|
NzVector3 vector;
|
|
vector.MakeZero();
|
|
|
|
return vector;
|
|
}
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const NzVector3<T>& vec)
|
|
{
|
|
return out << vec.ToString();
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> operator*(T scale, const NzVector3<T>& vec)
|
|
{
|
|
return NzVector3<T>(scale * vec.x, scale * vec.y, scale * vec.z);
|
|
}
|
|
|
|
template<typename T>
|
|
NzVector3<T> operator/(T scale, const NzVector3<T>& vec)
|
|
{
|
|
#if NAZARA_MATH_SAFE
|
|
if (NzNumberEquals(vec.x, F(0.0)) || NzNumberEquals(vec.y, F(0.0)) || NzNumberEquals(vec.z, F(0.0)))
|
|
{
|
|
NzString error("Division by zero");
|
|
|
|
NazaraError(error);
|
|
throw std::domain_error(error);
|
|
}
|
|
#endif
|
|
|
|
return NzVector3<T>(scale / vec.x, scale / vec.y, scale / vec.z);
|
|
}
|
|
|
|
#undef F
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|