470 lines
10 KiB
C++
470 lines
10 KiB
C++
// Copyright (C) 2017 Jérôme Leclercq
|
|
// This file is part of the "Nazara Engine - Mathematics module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Core/Algorithm.hpp>
|
|
#include <Nazara/Core/StringStream.hpp>
|
|
#include <Nazara/Math/Algorithm.hpp>
|
|
#include <cstring>
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
#define F(a) static_cast<T>(a)
|
|
|
|
namespace Nz
|
|
{
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Plane
|
|
* \brief Math class that represents a plane in 3D
|
|
*
|
|
* \remark The convention used in this class is: If you ask for plane with normal (0, 1, 0) and distance 1, you will get 0 * X + 1 * Y + 0 * Z - 1 = 0 or Y = 1. Notice the sign minus before the distance on the left side of the equation
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from its components
|
|
*
|
|
* \param normalX X component of the normal
|
|
* \param normalY Y component of the normal
|
|
* \param normalZ Z component of the normal
|
|
* \param D Distance to origin
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>::Plane(T normalX, T normalY, T normalZ, T D)
|
|
{
|
|
Set(normalX, normalY, normalZ, D);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from an array of four elements
|
|
*
|
|
* \param plane[4] plane[0] is X component, plane[1] is Y component, plane[2] is Z component and plane[3] is D
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>::Plane(const T plane[4])
|
|
{
|
|
Set(plane);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from a normal and a distance
|
|
*
|
|
* \param Normal normal of the vector
|
|
* \param D Distance to origin
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>::Plane(const Vector3<T>& Normal, T D)
|
|
{
|
|
Set(Normal, D);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from a normal and a point
|
|
*
|
|
* \param Normal Normal of the plane
|
|
* \param point Point which verifies the equation of the plane
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>::Plane(const Vector3<T>& Normal, const Vector3<T>& point)
|
|
{
|
|
Set(Normal, point);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from three points
|
|
*
|
|
* \param point1 First point
|
|
* \param point2 Second point
|
|
* \param point3 Third point
|
|
*
|
|
* \remark They are expected not to be colinear
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>::Plane(const Vector3<T>& point1, const Vector3<T>& point2, const Vector3<T>& point3)
|
|
{
|
|
Set(point1, point2, point3);
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs a Plane object from another type of Plane
|
|
*
|
|
* \param plane Plane of type U to convert to type T
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Plane<T>::Plane(const Plane<U>& plane)
|
|
{
|
|
Set(plane);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the distance from the plane to the point
|
|
* \return Distance to the point
|
|
*
|
|
* \param x X position of the point
|
|
* \param y Y position of the point
|
|
* \param z Z position of the point
|
|
*
|
|
* \remark If T is negative, it means that the point is in the opposite direction of the normal
|
|
*
|
|
* \see Distance
|
|
*/
|
|
|
|
template<typename T>
|
|
T Plane<T>::Distance(T x, T y, T z) const
|
|
{
|
|
return Distance(Vector3<T>(x, y, z));
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the distance from the plane to the point
|
|
* \return Distance to the point
|
|
*
|
|
* \param point Position of the point
|
|
*
|
|
* \remark If T is negative, it means that the point is in the opposite direction of the normal
|
|
*
|
|
* \see Distance
|
|
*/
|
|
|
|
template<typename T>
|
|
T Plane<T>::Distance(const Vector3<T>& point) const
|
|
{
|
|
return normal.DotProduct(point) - distance; // ax + by + cd - d = 0.
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the plane (0, 0, 1, 0)
|
|
* \return A reference to this plane with components (0, 0, 1, 0)
|
|
*
|
|
* \see XY
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::MakeXY()
|
|
{
|
|
return Set(F(0.0), F(0.0), F(1.0), F(0.0));
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the plane (0, 1, 0, 0)
|
|
* \return A reference to this plane with components (0, 1, 0, 0)
|
|
*
|
|
* \see XZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::MakeXZ()
|
|
{
|
|
return Set(F(0.0), F(1.0), F(0.0), F(0.0));
|
|
}
|
|
|
|
/*!
|
|
* \brief Makes the plane (1, 0, 0, 0)
|
|
* \return A reference to this plane with components (1, 0, 0, 0)
|
|
*
|
|
* \see YZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::MakeYZ()
|
|
{
|
|
return Set(F(1.0), F(0.0), F(0.0), F(0.0));
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane
|
|
* \return A reference to this plane
|
|
*
|
|
* \param normalX X component of the normal
|
|
* \param normalY Y component of the normal
|
|
* \param normalZ Z component of the normal
|
|
* \param D Distance to origin
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::Set(T normalX, T normalY, T normalZ, T D)
|
|
{
|
|
distance = D;
|
|
normal.Set(normalX, normalY, normalZ);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane from an array of four elements
|
|
* \return A reference to this plane
|
|
*
|
|
* \param plane[4] plane[0] is X component, plane[1] is Y component, plane[2] is Z component and plane[3] is D
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::Set(const T plane[4])
|
|
{
|
|
normal.Set(plane[0], plane[1], plane[2]);
|
|
distance = plane[3];
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane from a normal and a distance
|
|
* \return A reference to this plane
|
|
*
|
|
* \param Normal Normal of the vector
|
|
* \param D Distance to origin
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::Set(const Vector3<T>& Normal, T D)
|
|
{
|
|
distance = D;
|
|
normal = Normal;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane from a normal and a point
|
|
* \return A reference to this plane
|
|
*
|
|
* \param Normal Normal of the plane
|
|
* \param point Point which verifies the equation of the plane
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::Set(const Vector3<T>& Normal, const Vector3<T>& point)
|
|
{
|
|
normal = Normal;
|
|
distance = -normal.DotProduct(point);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane from three points
|
|
* \return A reference to this plane
|
|
*
|
|
* \param point1 First point
|
|
* \param point2 Second point
|
|
* \param point3 Third point
|
|
*
|
|
* \remark They are expected not to be colinear
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T>& Plane<T>::Set(const Vector3<T>& point1, const Vector3<T>& point2, const Vector3<T>& point3)
|
|
{
|
|
Vector3<T> edge1 = point2 - point1;
|
|
Vector3<T> edge2 = point3 - point1;
|
|
normal = edge1.CrossProduct(edge2);
|
|
normal.Normalize();
|
|
|
|
distance = normal.DotProduct(point3);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Sets the components of the plane from another type of Plane
|
|
* \return A reference to this plane
|
|
*
|
|
* \param plane Plane of type U to convert its components
|
|
*/
|
|
|
|
template<typename T>
|
|
template<typename U>
|
|
Plane<T>& Plane<T>::Set(const Plane<U>& plane)
|
|
{
|
|
normal.Set(plane.normal);
|
|
distance = F(plane.distance);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Gives a string representation
|
|
* \return A string representation of the object: "Plane(Normal: Vector3(x, y, z); Distance: w)"
|
|
*/
|
|
|
|
template<typename T>
|
|
String Plane<T>::ToString() const
|
|
{
|
|
StringStream ss;
|
|
|
|
return ss << "Plane(Normal: " << normal.ToString() << "; Distance: " << distance << ')';
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the plane to other one
|
|
* \return true if the planes are the same
|
|
*
|
|
* \param plane Other vector to compare with
|
|
*
|
|
* \remark Plane with normal N and distance D is the same than with normal -N et distance -D
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Plane<T>::operator==(const Plane& plane) const
|
|
{
|
|
return (normal == plane.normal && NumberEquals(distance, plane.distance)) || (normal == -plane.normal && NumberEquals(distance, -plane.distance));
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the plane to other one
|
|
* \return false if the planes are the same
|
|
*
|
|
* \param plane Other plane to compare with
|
|
*
|
|
* \remark Plane with normal N and distance D is the same than with normal -N et distance -D
|
|
*/
|
|
|
|
template<typename T>
|
|
bool Plane<T>::operator!=(const Plane& plane) const
|
|
{
|
|
return !operator==(plane);
|
|
}
|
|
|
|
/*!
|
|
* \brief Interpolates the plane to other one with a factor of interpolation
|
|
* \return A new plane which is the interpolation of two planes
|
|
*
|
|
* \param from Initial plane
|
|
* \param to Target plane
|
|
* \param interpolation Factor of interpolation
|
|
*
|
|
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
|
|
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Plane() is returned
|
|
*
|
|
* \see Lerp
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T> Plane<T>::Lerp(const Plane& from, const Plane& to, T interpolation)
|
|
{
|
|
#ifdef NAZARA_DEBUG
|
|
if (interpolation < F(0.0) || interpolation > F(1.0))
|
|
{
|
|
NazaraError("Interpolation must be in range [0..1] (Got " + String::Number(interpolation) + ')');
|
|
return Plane();
|
|
}
|
|
#endif
|
|
|
|
Plane plane;
|
|
plane.distance = Nz::Lerp(from.distance, to.distance, interpolation);
|
|
plane.normal = Vector3<T>::Lerp(from.normal, to.normal, interpolation);
|
|
plane.normal.Normalize();
|
|
|
|
return plane;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the plane (0, 0, 1, 0)
|
|
* \return A plane with components (0, 0, 1, 0)
|
|
*
|
|
* \see MakeXY
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T> Plane<T>::XY()
|
|
{
|
|
Plane plane;
|
|
plane.MakeXY();
|
|
|
|
return plane;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the plane (0, 1, 0, 0)
|
|
* \return A plane with components (0, 1, 0, 0)
|
|
*
|
|
* \see MakeXZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T> Plane<T>::XZ()
|
|
{
|
|
Plane plane;
|
|
plane.MakeXZ();
|
|
|
|
return plane;
|
|
}
|
|
|
|
/*!
|
|
* \brief Shorthand for the plane (1, 0, 0, 0)
|
|
* \return A plane with components (1, 0, 0, 0)
|
|
*
|
|
* \see MakeYZ
|
|
*/
|
|
|
|
template<typename T>
|
|
Plane<T> Plane<T>::YZ()
|
|
{
|
|
Plane plane;
|
|
plane.MakeYZ();
|
|
|
|
return plane;
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes a Vector2
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param plane Input Vector2
|
|
*/
|
|
template<typename T>
|
|
bool Serialize(SerializationContext& context, const Plane<T>& plane, TypeTag<Plane<T>>)
|
|
{
|
|
if (!Serialize(context, plane.normal))
|
|
return false;
|
|
|
|
if (!Serialize(context, plane.distance))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes a Plane
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param plane Output Plane
|
|
*/
|
|
template<typename T>
|
|
bool Unserialize(SerializationContext& context, Plane<T>* plane, TypeTag<Plane<T>>)
|
|
{
|
|
if (!Unserialize(context, &plane->normal))
|
|
return false;
|
|
|
|
if (!Unserialize(context, &plane->distance))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param plane The plane to output
|
|
*/
|
|
|
|
template<typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Plane<T>& plane)
|
|
{
|
|
return out << plane.ToString();
|
|
}
|
|
|
|
#undef F
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|