NazaraEngine/include/Nazara/Math/Plane.inl

337 lines
8.5 KiB
C++

// Copyright (C) 2023 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
// This file is part of the "Nazara Engine - Math module"
// For conditions of distribution and use, see copyright notice in Config.hpp
#include <Nazara/Core/Algorithm.hpp>
#include <cstring>
#include <sstream>
#include <Nazara/Core/Debug.hpp>
namespace Nz
{
/*!
* \ingroup math
* \class Nz::Plane
* \brief Math class that represents a plane in 3D
*
* \remark The convention used in this class is: If you ask for plane with normal (0, 1, 0) and distance 1, you will get 0 * X + 1 * Y + 0 * Z - 1 = 0 or Y = 1. Notice the sign minus before the distance on the left side of the equation
*/
/*!
* \brief Constructs a Plane object from its components
*
* \param normalX X component of the normal
* \param normalY Y component of the normal
* \param normalZ Z component of the normal
* \param D Distance to origin
*/
template<typename T>
constexpr Plane<T>::Plane(T normalX, T normalY, T normalZ, T D) :
normal(normalX, normalY, normalZ),
distance(D)
{
}
/*!
* \brief Constructs a Plane object from an array of four elements
*
* \param plane[4] plane[0] is X component, plane[1] is Y component, plane[2] is Z component and plane[3] is D
*/
template<typename T>
constexpr Plane<T>::Plane(const T plane[4]) :
normal(plane[0], plane[1], plane[2]),
distance(plane[3])
{
}
/*!
* \brief Constructs a Plane object from a normal and a distance
*
* \param Normal normal of the vector
* \param D Distance to origin
*/
template<typename T>
constexpr Plane<T>::Plane(const Vector3<T>& Normal, T D) :
normal(Normal),
distance(D)
{
}
/*!
* \brief Constructs a Plane object from a normal and a point
*
* \param Normal Normal of the plane
* \param point Point which verifies the equation of the plane
*/
template<typename T>
constexpr Plane<T>::Plane(const Vector3<T>& Normal, const Vector3<T>& point) :
normal(Normal),
distance(-Normal.DotProduct(point))
{
}
/*!
* \brief Constructs a Plane object from three points
*
* \param point1 First point
* \param point2 Second point
* \param point3 Third point
*
* \remark They are expected not to be colinear
*/
template<typename T>
Plane<T>::Plane(const Vector3<T>& point1, const Vector3<T>& point2, const Vector3<T>& point3)
{
Vector3<T> edge1 = point2 - point1;
Vector3<T> edge2 = point3 - point1;
normal = edge1.CrossProduct(edge2);
normal.Normalize();
distance = normal.DotProduct(point3);
}
/*!
* \brief Constructs a Plane object from another type of Plane
*
* \param plane Plane of type U to convert to type T
*/
template<typename T>
template<typename U>
constexpr Plane<T>::Plane(const Plane<U>& plane) :
normal(Vector3<T>(plane.normal)),
distance(T(plane.distance))
{
}
template<typename T>
constexpr bool Plane<T>::ApproxEqual(const Plane& plane, T maxDifference) const
{
if (!normal.ApproxEqual(plane.normal, maxDifference))
return false;
return NumberEquals(distance, plane.distance, maxDifference);
}
/*!
* \brief Returns the distance from the plane to the point
* \return Distance to the point
*
* \param x X position of the point
* \param y Y position of the point
* \param z Z position of the point
*
* \remark If T is negative, it means that the point is in the opposite direction of the normal
*
* \see Distance
*/
template<typename T>
constexpr T Plane<T>::Distance(T x, T y, T z) const
{
return Distance(Vector3<T>(x, y, z));
}
/*!
* \brief Returns the distance from the plane to the point
* \return Distance to the point
*
* \param point Position of the point
*
* \remark If T is negative, it means that the point is in the opposite direction of the normal
*
* \see Distance
*/
template<typename T>
constexpr T Plane<T>::Distance(const Vector3<T>& point) const
{
return normal.DotProduct(point) - distance; // ax + by + cd - d = 0.
}
/*!
* \brief Gives a string representation
* \return A string representation of the object: "Plane(Normal: Vector3(x, y, z); Distance: w)"
*/
template<typename T>
std::string Plane<T>::ToString() const
{
std::ostringstream ss;
ss << *this;
return ss.str();
}
/*!
* \brief Compares the plane to other one
* \return true if the planes are the same
*
* \param plane Other vector to compare with
*
* \remark Plane with normal N and distance D is the same than with normal -N et distance -D
*/
template<typename T>
constexpr bool Plane<T>::operator==(const Plane& plane) const
{
return normal == plane.normal && distance == plane.distance;
}
/*!
* \brief Compares the plane to other one
* \return false if the planes are the same
*
* \param plane Other plane to compare with
*
* \remark Plane with normal N and distance D is the same than with normal -N et distance -D
*/
template<typename T>
constexpr bool Plane<T>::operator!=(const Plane& plane) const
{
return !operator==(plane);
}
template<typename T>
constexpr bool Plane<T>::ApproxEqual(const Plane& lhs, const Plane& rhs, T maxDifference)
{
return lhs.ApproxEqual(rhs, maxDifference);
}
/*!
* \brief Intersects three planes to retrieve a single intersection point
* \return The intersection point
*
* \param p0 First plane
* \param p1 Second plane
* \param p2 Third plane
*
* \remark All three planes must have differents normals otherwise result is undefined
*/
template<typename T>
constexpr Vector3<T> Plane<T>::Intersect(const Plane& p0, const Plane& p1, const Plane& p2)
{
// From https://donw.io/post/frustum-point-extraction/
Vector3f bxc = Vector3f::CrossProduct(p1.normal, p2.normal);
Vector3f cxa = Vector3f::CrossProduct(p2.normal, p0.normal);
Vector3f axb = Vector3f::CrossProduct(p0.normal, p1.normal);
Vector3f r = -p0.distance * bxc - p1.distance * cxa - p2.distance * axb;
return r * (T(1.0) / Vector3f::DotProduct(p0.normal, bxc));
}
/*!
* \brief Interpolates the plane to other one with a factor of interpolation
* \return A new plane which is the interpolation of two planes
*
* \param from Initial plane
* \param to Target plane
* \param interpolation Factor of interpolation
*
* \remark interpolation is meant to be between 0 and 1, other values are potentially undefined behavior
* \remark With NAZARA_DEBUG, a NazaraError is thrown and Plane() is returned
*
* \see Lerp
*/
template<typename T>
constexpr Plane<T> Plane<T>::Lerp(const Plane& from, const Plane& to, T interpolation)
{
#ifdef NAZARA_DEBUG
if (interpolation < T(0.0) || interpolation > T(1.0))
{
NazaraError("Interpolation must be in range [0..1] (Got " + NumberToString(interpolation) + ')');
return Plane();
}
#endif
Plane plane;
plane.distance = Nz::Lerp(from.distance, to.distance, interpolation);
plane.normal = Vector3<T>::Lerp(from.normal, to.normal, interpolation);
plane.normal.Normalize();
return plane;
}
/*!
* \brief Shorthand for the plane (0, 0, 1, 0)
* \return A plane with components (0, 0, 1, 0)
*/
template<typename T>
constexpr Plane<T> Plane<T>::XY()
{
return Plane(Vector3<T>::UnitZ(), 0);
}
/*!
* \brief Shorthand for the plane (0, 1, 0, 0)
* \return A plane with components (0, 1, 0, 0)
*/
template<typename T>
constexpr Plane<T> Plane<T>::XZ()
{
return Plane(Vector3<T>::UnitY(), 0);
}
/*!
* \brief Shorthand for the plane (1, 0, 0, 0)
* \return A plane with components (1, 0, 0, 0)
*/
template<typename T>
constexpr Plane<T> Plane<T>::YZ()
{
return Plane(Vector3<T>::UnitX(), 0);
}
/*!
* \brief Serializes a Vector2
* \return true if successfully serialized
*
* \param context Serialization context
* \param plane Input Vector2
*/
template<typename T>
bool Serialize(SerializationContext& context, const Plane<T>& plane, TypeTag<Plane<T>>)
{
if (!Serialize(context, plane.normal))
return false;
if (!Serialize(context, plane.distance))
return false;
return true;
}
/*!
* \brief Unserializes a Plane
* \return true if successfully unserialized
*
* \param context Serialization context
* \param plane Output Plane
*/
template<typename T>
bool Unserialize(SerializationContext& context, Plane<T>* plane, TypeTag<Plane<T>>)
{
if (!Unserialize(context, &plane->normal))
return false;
if (!Unserialize(context, &plane->distance))
return false;
return true;
}
/*!
* \brief Output operator
* \return The stream
*
* \param out The stream
* \param plane The plane to output
*/
template<typename T>
std::ostream& operator<<(std::ostream& out, const Nz::Plane<T>& plane)
{
return out << "Plane(Normal: " << plane.normal << "; Distance: " << plane.distance << ')';
}
}
#include <Nazara/Core/DebugOff.hpp>
#include "Plane.hpp"