NazaraEngine/src/Nazara/Graphics/Resources/Shaders/PhongMaterial.nzsl

314 lines
8.6 KiB
Plaintext

[nzsl_version("1.0")]
module PhongMaterial;
import InstanceData from Engine.InstanceData;
import LightData from Engine.LightData;
import ViewerData from Engine.ViewerData;
// Basic material options
option HasDiffuseTexture: bool = false;
option HasAlphaTexture: bool = false;
option AlphaTest: bool = false;
// Phong material options
option HasEmissiveTexture: bool = false;
option HasHeightTexture: bool = false;
option HasNormalTexture: bool = false;
option HasSpecularTexture: bool = false;
// Billboard related options
option Billboard: bool = false;
option BillboardCenterLocation: i32 = -1;
option BillboardColorLocation: i32 = -1;
option BillboardSizeRotLocation: i32 = -1;
// Vertex declaration related options
option ColorLocation: i32 = -1;
option NormalLocation: i32 = -1;
option PosLocation: i32;
option TangentLocation: i32 = -1;
option UvLocation: i32 = -1;
const HasNormal = (NormalLocation >= 0);
const HasVertexColor = (ColorLocation >= 0);
const HasColor = (HasVertexColor || Billboard);
const HasTangent = (TangentLocation >= 0);
const HasUV = (UvLocation >= 0);
const HasNormalMapping = HasNormalTexture && HasNormal && HasTangent;
[layout(std140)]
struct MaterialSettings
{
// BasicSettings
AlphaThreshold: f32,
DiffuseColor: vec4[f32],
// PhongSettings
AmbientColor: vec3[f32],
SpecularColor: vec3[f32],
Shininess: f32,
}
// TODO: Add enums
const DirectionalLight = 0;
const PointLight = 1;
const SpotLight = 2;
external
{
[binding(0)] settings: uniform[MaterialSettings],
[binding(1)] MaterialDiffuseMap: sampler2D[f32],
[binding(2)] MaterialAlphaMap: sampler2D[f32],
[binding(3)] TextureOverlay: sampler2D[f32],
[binding(4)] instanceData: uniform[InstanceData],
[binding(5)] viewerData: uniform[ViewerData],
[binding(6)] lightData: uniform[LightData],
[binding(7)] MaterialEmissiveMap: sampler2D[f32],
[binding(8)] MaterialHeightMap: sampler2D[f32],
[binding(9)] MaterialNormalMap: sampler2D[f32],
[binding(10)] MaterialSpecularMap: sampler2D[f32],
}
struct VertToFrag
{
[location(0)] worldPos: vec3[f32],
[location(1), cond(HasUV)] uv: vec2[f32],
[location(2), cond(HasColor)] color: vec4[f32],
[location(3), cond(HasNormal)] normal: vec3[f32],
[location(4), cond(HasNormalMapping)] tangent: vec3[f32],
[builtin(position)] position: vec4[f32],
}
// Fragment stage
struct FragOut
{
[location(0)] RenderTarget0: vec4[f32]
}
[entry(frag)]
fn main(input: VertToFrag) -> FragOut
{
let diffuseColor = settings.DiffuseColor;
const if (HasUV)
diffuseColor *= TextureOverlay.Sample(input.uv);
const if (HasColor)
diffuseColor *= input.color;
const if (HasDiffuseTexture)
diffuseColor *= MaterialDiffuseMap.Sample(input.uv);
const if (HasAlphaTexture)
diffuseColor.w *= MaterialAlphaMap.Sample(input.uv).x;
const if (AlphaTest)
{
if (diffuseColor.w < settings.AlphaThreshold)
discard;
}
const if (HasNormal)
{
let lightAmbient = vec3[f32](0.0, 0.0, 0.0);
let lightDiffuse = vec3[f32](0.0, 0.0, 0.0);
let lightSpecular = vec3[f32](0.0, 0.0, 0.0);
let eyeVec = normalize(viewerData.eyePosition - input.worldPos);
let normal: vec3[f32];
const if (HasNormalMapping)
{
let N = normalize(input.normal);
let T = normalize(input.tangent);
let B = cross(N, T);
let tbnMatrix = mat3[f32](T, B, N);
normal = normalize(tbnMatrix * (MaterialNormalMap.Sample(input.uv).xyz * 2.0 - vec3[f32](1.0, 1.0, 1.0)));
}
else
normal = normalize(input.normal);
for i in u32(0) -> lightData.lightCount
{
let light = lightData.lights[i];
let lightAmbientFactor = light.factor.x;
let lightDiffuseFactor = light.factor.y;
// TODO: Add switch instruction
if (light.type == DirectionalLight)
{
let lightDir = light.parameter1.xyz;
lightAmbient += light.color.rgb * lightAmbientFactor * settings.AmbientColor;
let lambert = max(dot(normal, -lightDir), 0.0);
lightDiffuse += lambert * light.color.rgb * lightDiffuseFactor;
let reflection = reflect(lightDir, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
lightSpecular += specFactor * light.color.rgb;
}
else if (light.type == PointLight)
{
let lightPos = light.parameter1.xyz;
let lightInvRadius = light.parameter1.w;
let lightToPos = input.worldPos - lightPos;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let attenuationFactor = max(1.0 - dist * lightInvRadius, 0.0);
lightAmbient += attenuationFactor * light.color.rgb * lightAmbientFactor * settings.AmbientColor;
let lambert = max(dot(normal, -lightToPosNorm), 0.0);
lightDiffuse += attenuationFactor * lambert * light.color.rgb * lightDiffuseFactor;
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
lightSpecular += attenuationFactor * specFactor * light.color.rgb;
}
else if (light.type == SpotLight)
{
let lightPos = light.parameter1.xyz;
let lightDir = light.parameter2.xyz;
let lightInvRadius = light.parameter1.w;
let lightInnerAngle = light.parameter3.x;
let lightOuterAngle = light.parameter3.y;
let lightToPos = input.worldPos - lightPos;
let dist = length(lightToPos);
let lightToPosNorm = lightToPos / max(dist, 0.0001);
let curAngle = dot(lightDir, lightToPosNorm);
let innerMinusOuterAngle = lightInnerAngle - lightOuterAngle;
let attenuationFactor = max(1.0 - dist * lightInvRadius, 0.0);
attenuationFactor *= max((curAngle - lightOuterAngle) / innerMinusOuterAngle, 0.0);
lightAmbient += attenuationFactor * light.color.rgb * lightAmbientFactor * settings.AmbientColor;
let lambert = max(dot(normal, -lightToPosNorm), 0.0);
lightDiffuse += attenuationFactor * lambert * light.color.rgb * lightDiffuseFactor;
let reflection = reflect(lightToPosNorm, normal);
let specFactor = max(dot(reflection, eyeVec), 0.0);
specFactor = pow(specFactor, settings.Shininess);
lightSpecular += attenuationFactor * specFactor * light.color.rgb;
}
}
lightSpecular *= settings.SpecularColor;
const if (HasSpecularTexture)
lightSpecular *= MaterialSpecularMap.Sample(input.uv).rgb;
let lightColor = lightAmbient + lightDiffuse + lightSpecular;
let output: FragOut;
output.RenderTarget0 = vec4[f32](lightColor, 1.0) * diffuseColor;
return output;
}
else
{
let output: FragOut;
output.RenderTarget0 = diffuseColor;
return output;
}
}
// Vertex stage
struct VertIn
{
[location(PosLocation)]
pos: vec3[f32],
[cond(HasVertexColor), location(ColorLocation)]
color: vec4[f32],
[cond(HasUV), location(UvLocation)]
uv: vec2[f32],
[cond(HasNormal), location(NormalLocation)]
normal: vec3[f32],
[cond(HasTangent), location(TangentLocation)]
tangent: vec3[f32],
[cond(Billboard), location(BillboardCenterLocation)]
billboardCenter: vec3[f32],
[cond(Billboard), location(BillboardSizeRotLocation)]
billboardSizeRot: vec4[f32], //< width,height,sin,cos
[cond(Billboard), location(BillboardColorLocation)]
billboardColor: vec4[f32]
}
[entry(vert), cond(Billboard)]
fn billboardMain(input: VertIn) -> VertToFrag
{
let size = input.billboardSizeRot.xy;
let sinCos = input.billboardSizeRot.zw;
let rotatedPosition = vec2[f32](
input.pos.x * sinCos.y - input.pos.y * sinCos.x,
input.pos.y * sinCos.y + input.pos.x * sinCos.x
);
rotatedPosition *= size;
let cameraRight = vec3[f32](viewerData.viewMatrix[0][0], viewerData.viewMatrix[1][0], viewerData.viewMatrix[2][0]);
let cameraUp = vec3[f32](viewerData.viewMatrix[0][1], viewerData.viewMatrix[1][1], viewerData.viewMatrix[2][1]);
let vertexPos = input.billboardCenter;
vertexPos += cameraRight * rotatedPosition.x;
vertexPos += cameraUp * rotatedPosition.y;
let output: VertToFrag;
output.position = viewerData.viewProjMatrix * instanceData.worldMatrix * vec4[f32](vertexPos, 1.0);
const if (HasColor)
output.color = input.billboardColor;
const if (HasUV)
output.uv = input.pos.xy + vec2[f32](0.5, 0.5);
return output;
}
[entry(vert), cond(!Billboard)]
fn main(input: VertIn) -> VertToFrag
{
let worldPosition = instanceData.worldMatrix * vec4[f32](input.pos, 1.0);
let output: VertToFrag;
output.worldPos = worldPosition.xyz;
output.position = viewerData.viewProjMatrix * worldPosition;
let rotationMatrix = transpose(inverse(mat3[f32](instanceData.worldMatrix)));
const if (HasColor)
output.color = input.color;
const if (HasNormal)
output.normal = rotationMatrix * input.normal;
const if (HasUV)
output.uv = input.uv;
const if (HasNormalMapping)
output.tangent = rotationMatrix * input.tangent;
return output;
}