618 lines
14 KiB
C++
618 lines
14 KiB
C++
// Copyright (C) 2021 Jérôme "Lynix" Leclercq (lynix680@gmail.com)
|
|
// This file is part of the "Nazara Engine - Math module"
|
|
// For conditions of distribution and use, see copyright notice in Config.hpp
|
|
|
|
#include <Nazara/Math/Angle.hpp>
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <sstream>
|
|
|
|
#ifdef NAZARA_PLATFORM_POSIX
|
|
#include <math.h> //< sincos
|
|
#endif
|
|
|
|
#include <Nazara/Core/Debug.hpp>
|
|
|
|
namespace Nz
|
|
{
|
|
namespace Detail
|
|
{
|
|
template<AngleUnit Unit> struct AngleUtils;
|
|
|
|
template<>
|
|
struct AngleUtils<AngleUnit::Degree>
|
|
{
|
|
template<typename T> static constexpr T GetEpsilon()
|
|
{
|
|
return T(1e-4);
|
|
}
|
|
|
|
template<typename T> static constexpr T GetLimit()
|
|
{
|
|
return 180;
|
|
}
|
|
|
|
template<typename T> static constexpr T FromDegrees(T degrees)
|
|
{
|
|
return degrees;
|
|
}
|
|
|
|
template<typename T> static constexpr T FromRadians(T radians)
|
|
{
|
|
return RadianToDegree(radians);
|
|
}
|
|
|
|
template<typename T> static constexpr T ToDegrees(T degrees)
|
|
{
|
|
return degrees;
|
|
}
|
|
|
|
template<typename T> static constexpr T ToRadians(T degrees)
|
|
{
|
|
return DegreeToRadian(degrees);
|
|
}
|
|
|
|
template<typename T> static std::ostream& ToString(std::ostream& out, T value)
|
|
{
|
|
return out << "Angle(" << value << "deg)";
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct AngleUtils<AngleUnit::Radian>
|
|
{
|
|
template<typename T> static constexpr T GetEpsilon()
|
|
{
|
|
return T(1e-5);
|
|
}
|
|
|
|
template<typename T> static constexpr T GetLimit()
|
|
{
|
|
return Pi<T>;
|
|
}
|
|
|
|
template<typename T> static constexpr T FromDegrees(T degrees)
|
|
{
|
|
return DegreeToRadian(degrees);
|
|
}
|
|
|
|
template<typename T> static constexpr T FromRadians(T radians)
|
|
{
|
|
return radians;
|
|
}
|
|
|
|
template<typename T> static constexpr T ToDegrees(T radians)
|
|
{
|
|
return RadianToDegree(radians);
|
|
}
|
|
|
|
template<typename T> static constexpr T ToRadians(T radians)
|
|
{
|
|
return radians;
|
|
}
|
|
|
|
template<typename T> static std::ostream& ToString(std::ostream& out, T value)
|
|
{
|
|
return out << "Angle(" << value << "rad)";
|
|
}
|
|
};
|
|
|
|
#ifdef NAZARA_PLATFORM_LINUX
|
|
template<typename T>
|
|
void SinCos(std::enable_if_t<!std::is_same<T, float>::value && !std::is_same<T, long double>::value, double> x, T* sin, T* cos)
|
|
{
|
|
double s, c;
|
|
::sincos(x, &s, &c);
|
|
|
|
*sin = static_cast<T>(s);
|
|
*cos = static_cast<T>(c);
|
|
}
|
|
|
|
template<typename T>
|
|
void SinCos(std::enable_if_t<std::is_same<T, float>::value, float> x, float* s, float* c)
|
|
{
|
|
::sincosf(x, s, c);
|
|
}
|
|
|
|
template<typename T>
|
|
void SinCos(std::enable_if_t<std::is_same<T, long double>::value, long double> x, long double* s, long double* c)
|
|
{
|
|
::sincosl(x, s, c);
|
|
}
|
|
#else
|
|
// Naive implementation, hopefully optimized by the compiler
|
|
template<typename T>
|
|
void SinCos(T x, T* sin, T* cos)
|
|
{
|
|
*sin = std::sin(x);
|
|
*cos = std::cos(x);
|
|
}
|
|
#endif
|
|
}
|
|
/*!
|
|
* \ingroup math
|
|
* \class Nz::Angle
|
|
* \brief Math class that represents an angle
|
|
*/
|
|
|
|
/*!
|
|
* \brief Constructs an Angle object with an angle value
|
|
*
|
|
* \param value value of the angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>::Angle(T angle) :
|
|
value(angle)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs an Angle object from a angle in degrees, converting if required
|
|
*
|
|
* \param value Angle object to copy
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>::Angle(const Angle<AngleUnit::Degree, T>& angle) :
|
|
value(Detail::AngleUtils<Unit>::FromDegrees(angle.value))
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Constructs an Angle object from a angle in radians, converting if required
|
|
*
|
|
* \param value Angle object to copy
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>::Angle(const Angle<AngleUnit::Radian, T>& angle) :
|
|
value(Detail::AngleUtils<Unit>::FromRadians(angle.value))
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the cosine of the angle
|
|
* \return Cosine of angle
|
|
*
|
|
* \see GetSinCos
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
T Angle<Unit, T>::GetCos() const
|
|
{
|
|
return std::cos(ToRadians());
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the sine of the angle
|
|
* \return Sine of angle
|
|
*
|
|
* \see GetSinCos
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
T Angle<Unit, T>::GetSin() const
|
|
{
|
|
return std::sin(ToRadians());
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes both sines and cosines of the angle
|
|
* \return Sine and cosine of the angle
|
|
*
|
|
* \remark This is potentially faster than calling both GetSin and GetCos separately as it can computes both values at the same time.
|
|
*
|
|
* \see GetCos, GetSin
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
std::pair<T, T> Angle<Unit, T>::GetSinCos() const
|
|
{
|
|
T sin, cos;
|
|
Detail::SinCos<T>(ToRadians(), &sin, &cos);
|
|
|
|
return std::make_pair(sin, cos);
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the tangent of the angle
|
|
* \return Tangent value of the angle
|
|
*
|
|
* \see GetCos, GetSin
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
T Angle<Unit, T>::GetTan() const
|
|
{
|
|
return std::tan(ToRadians());
|
|
}
|
|
|
|
/*!
|
|
* \brief Changes the angle value to zero
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::MakeZero()
|
|
{
|
|
value = T(0);
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Normalizes the angle value
|
|
*
|
|
* If angle exceeds local limits positively or negatively, bring it back between them.
|
|
* For degree angles, local limits are [-180, 180]
|
|
* For radian angles, local limits are [-Pi, Pi]
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::Normalize()
|
|
{
|
|
constexpr T limit = Detail::AngleUtils<Unit>::template GetLimit<T>();
|
|
constexpr T twoLimit = limit * T(2);
|
|
|
|
value = std::fmod(value, twoLimit);
|
|
if (value < T(0))
|
|
value += twoLimit;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Copies the angle value of an angle
|
|
*
|
|
* \param Angle Angle which will be copied
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::Set(const Angle& ang)
|
|
{
|
|
value = ang.value;
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Changes the angle value to the same as an Angle of a different type
|
|
*
|
|
* \param Angle Angle which will be casted
|
|
*
|
|
* \remark Conversion from U to T occurs using static_cast
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
template<typename U>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::Set(const Angle<Unit, U>& ang)
|
|
{
|
|
value = static_cast<T>(ang.value);
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the degree angle that is equivalent to this one
|
|
* \return Equivalent degree angle value
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr T Angle<Unit, T>::ToDegrees() const
|
|
{
|
|
return Detail::AngleUtils<Unit>::ToDegrees(value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the degree angle that is equivalent to this one
|
|
* \return Equivalent degree angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<AngleUnit::Degree, T> Angle<Unit, T>::ToDegreeAngle() const
|
|
{
|
|
return DegreeAngle<T>(ToDegrees());
|
|
}
|
|
|
|
/*!
|
|
* \brief Converts the angle to an Euler Angles representation
|
|
* \return A 2D rotation expressed in Euler angles
|
|
*
|
|
* This will assume two-dimensional usage, and will set the angle value (as degrees) as the roll value of the Euler Angles, leaving pitch and yaw to zero
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
EulerAngles<T> Angle<Unit, T>::ToEulerAngles() const
|
|
{
|
|
return EulerAngles<T>(0, 0, ToDegrees());
|
|
}
|
|
|
|
/*!
|
|
* \brief Converts the angle to a Quaternion representation
|
|
* \return A 2D rotation expressed with Quaternion
|
|
*
|
|
* This will assume two-dimensional usage, as if the angle was first converted to Euler Angles and then to a Quaternion
|
|
*
|
|
* \see ToEulerAngles
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
Quaternion<T> Angle<Unit, T>::ToQuaternion() const
|
|
{
|
|
auto halfAngle = Angle(*this) / 2.f;
|
|
auto sincos = halfAngle.GetSinCos();
|
|
return Quaternion<T>(sincos.second, 0, 0, sincos.first);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the radian angle that is equivalent to this angle
|
|
* \return Equivalent radian angle value
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr T Angle<Unit, T>::ToRadians() const
|
|
{
|
|
return Detail::AngleUtils<Unit>::ToRadians(value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the radian angle that is equivalent to this angle
|
|
* \return Equivalent radian angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<AngleUnit::Radian, T> Angle<Unit, T>::ToRadianAngle() const
|
|
{
|
|
return RadianAngle<T>(ToRadians());
|
|
}
|
|
|
|
/*!
|
|
* \brief Converts the angle to a string representation
|
|
* \return String representation of the angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
std::string Angle<Unit, T>::ToString() const
|
|
{
|
|
std::ostringstream oss;
|
|
Detail::AngleUtils<Unit>::ToString(oss, value);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the degree angle that is equivalent to this one
|
|
* \return Equivalent degree angle
|
|
*/
|
|
/*template<AngleUnit Unit, typename T>
|
|
template<AngleUnit U, typename>
|
|
Angle<Unit, T>::operator Angle<AngleUnit::Degree, T>() const
|
|
{
|
|
return ToDegreeAngle();
|
|
}*/
|
|
|
|
/*!
|
|
* \brief Converts the angle to a string representation
|
|
* \return String representation of the angle
|
|
*/
|
|
/*template<AngleUnit Unit, typename T>
|
|
template<AngleUnit U, typename>
|
|
Angle<Unit, T>::operator Angle<AngleUnit::Radian, T>() const
|
|
{
|
|
return ToRadianAngle();
|
|
}*/
|
|
|
|
/*!
|
|
* \brief Addition operator
|
|
* \return Adds two angles together
|
|
*
|
|
* \param other Angle to add
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::operator+(const Angle& other) const
|
|
{
|
|
return Angle(value + other.value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Subtraction operator
|
|
* \return Subtracts two angles together
|
|
*
|
|
* \param other Angle to subtract
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::operator-(const Angle& other) const
|
|
{
|
|
return Angle(value - other.value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplication operator
|
|
* \return A copy of the angle, scaled by the multiplier
|
|
*
|
|
* \param scalar Multiplier
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::operator*(T scalar) const
|
|
{
|
|
return Angle(value * scalar);
|
|
}
|
|
|
|
/*!
|
|
* \brief Divides the angle by a scalar
|
|
* \return A copy of the angle, divided by the divider
|
|
*
|
|
* \param divider Divider
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::operator/(T divider) const
|
|
{
|
|
return Angle(value / divider);
|
|
}
|
|
|
|
/*!
|
|
* \brief Adds an angle by another
|
|
* \return A reference to the angle
|
|
*
|
|
* \param other Angle to add
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::operator+=(const Angle& other)
|
|
{
|
|
value += other.value;
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Subtract an angle by another
|
|
* \return A reference to the angle
|
|
*
|
|
* \param other Angle to subtract
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::operator-=(const Angle& other)
|
|
{
|
|
value -= other.value;
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Scales the angle by a scalar
|
|
* \return A reference to the angle
|
|
*
|
|
* \param scalar Multiplier
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::operator*=(T scalar)
|
|
{
|
|
value *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Divides the angle by a scalar
|
|
* \return A reference to the angle
|
|
*
|
|
* \param divider Divider
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T>& Angle<Unit, T>::operator/=(T divider)
|
|
{
|
|
value /= divider;
|
|
return *this;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the angle to another for equality
|
|
* \return True if both angles are equal
|
|
*
|
|
* \param other The other angle to compare to
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr bool Angle<Unit, T>::operator==(const Angle& other) const
|
|
{
|
|
return NumberEquals(value, other.value, Detail::AngleUtils<Unit>::template GetEpsilon<T>());
|
|
}
|
|
|
|
/*!
|
|
* \brief Compares the angle to another for inequality
|
|
* \return True if both angles are equal
|
|
*
|
|
* \param other The other angle to compare to
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr bool Angle<Unit, T>::operator!=(const Angle& other) const
|
|
{
|
|
return !NumberEquals(value, other.value, Detail::AngleUtils<Unit>::template GetEpsilon<T>());
|
|
}
|
|
|
|
/*!
|
|
* \brief Builds an Angle instance using a degree angle, converting if needed
|
|
* \return An angle describing the degree angle as Unit
|
|
*
|
|
* \param ang Degree angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::FromDegrees(T ang)
|
|
{
|
|
return Angle(Detail::AngleUtils<Unit>::FromDegrees(ang));
|
|
}
|
|
|
|
/*!
|
|
* \brief Builds an Angle instance using a radian angle, converting if needed
|
|
* \return An angle describing the radian angle as Unit
|
|
*
|
|
* \param ang Radian angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::FromRadians(T ang)
|
|
{
|
|
return Angle(Detail::AngleUtils<Unit>::FromRadians(ang));
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns an angle with an angle of zero
|
|
* \return Zero angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
constexpr Angle<Unit, T> Angle<Unit, T>::Zero()
|
|
{
|
|
Angle angle;
|
|
angle.MakeZero();
|
|
|
|
return angle;
|
|
}
|
|
|
|
/*!
|
|
* \brief Serializes an Angle
|
|
* \return true if successfully serialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param angle Input Angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
bool Serialize(SerializationContext& context, const Angle<Unit, T>& angle, TypeTag<Angle<Unit, T>>)
|
|
{
|
|
if (!Serialize(context, angle.value))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Unserializes an Angle
|
|
* \return true if successfully unserialized
|
|
*
|
|
* \param context Serialization context
|
|
* \param angle Output Angle
|
|
*/
|
|
template<AngleUnit Unit, typename T>
|
|
bool Unserialize(SerializationContext& context, Angle<Unit, T>* angle, TypeTag<Angle<Unit, T>>)
|
|
{
|
|
if (!Unserialize(context, &angle->value))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Multiplication operator
|
|
* \return An angle corresponding to scale * angle
|
|
*
|
|
* \param scale Multiplier
|
|
* \param angle Angle
|
|
*/
|
|
template<Nz::AngleUnit Unit, typename T>
|
|
Nz::Angle<Unit, T> operator*(T scale, const Nz::Angle<Unit, T>& angle)
|
|
{
|
|
return Nz::Angle<Unit, T>(scale * angle.value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Division operator
|
|
* \return An angle corresponding to scale / angle
|
|
*
|
|
* \param scale Divisor
|
|
* \param angle Angle
|
|
*/
|
|
template<Nz::AngleUnit Unit, typename T>
|
|
Nz::Angle<Unit, T> operator/(T scale, const Nz::Angle<Unit, T>& angle)
|
|
{
|
|
return Nz::Angle<Unit, T>(scale / angle.value);
|
|
}
|
|
|
|
/*!
|
|
* \brief Output operator
|
|
* \return The stream
|
|
*
|
|
* \param out The stream
|
|
* \param box The box to output
|
|
*/
|
|
template<Nz::AngleUnit Unit, typename T>
|
|
std::ostream& operator<<(std::ostream& out, const Nz::Angle<Unit, T>& angle)
|
|
{
|
|
return Nz::Detail::AngleUtils<Unit>::ToString(out, angle.value);
|
|
}
|
|
|
|
#include <Nazara/Core/DebugOff.hpp>
|